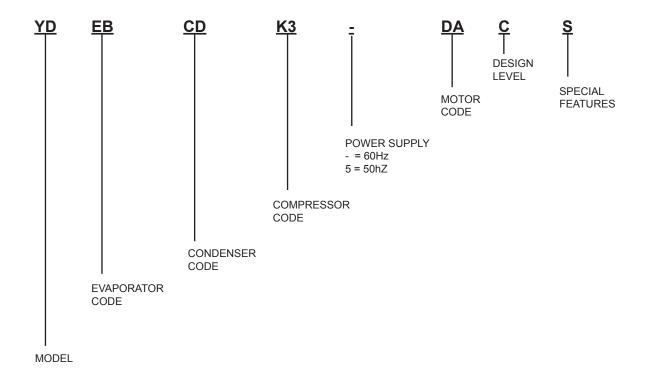
MODEL YD DUAL CENTRIFUGAL COMPRESSOR CHILLERS STYLE C


1500 - 6000 Tons 5265 - 21096 kW Utilizing R-134a

Nomenclature

Approvals

- ASME Boiler and Pressure Vessel Code Section VIII Division 1.
- AHRI Standard 550/590 (up to 3000 tons or 10,500 kW).
- UL 1995 Heating and Cooling Equipment.
- ASHRAE 15 Safety Code for Mechanical Refrigeration.
- ASHRAE Guideline 3 Reducing Emission of Halogenated Refrigerants in Refrigeration and Air-Conditioning Equipment and Systems.
- N.E.C. National Electrical Code.
- OSHA Occupational Safety and Health Act.

Table Of Contents

INTRODUCTION	5
SUSTAINABILITY FOCUS	9
UNIT COMPONENTS	12
EQUIPMENT OVERVIEW	13
OPTIVIEW CONTROL CENTER	18
STARTERS AND DRIVES	29
ACCESSORIES AND MODIFICATIONS	35
APPLICATION DATA	37
ELECTRICAL CONSIDERATIONS	50
DIMENSIONS	60
ISOLATORS	80
COMPONENT DIMENSIONS	84
WEIGHTS	87
GUIDE SPECIFICATIONS	88
SI METRIC CONVERSION	104

FORM 160.69-EG3 (815)

THIS PAGE INTENTIONALLY LEFT BLANK.

Introduction

The YORK® YD™ chillers offer a complete combination of features for total owner satisfaction. The YD line of chillers utilize two YORK centrifugal compressors operating in parallel on a common set of heat exchanger shells to obtain large chiller capacities, and efficient part load operation.

MATCHED COMPONENTS MAXIMIZE EFFICIENCY

Actual chiller efficiency cannot be determined by analyzing the theoretical efficiency of any one chiller component. It requires a specific combination of heat exchanger, compressor, and motor performance to achieve the lowest system kW/ton. YORK YD chiller technology matches chiller system components to provide maximum chiller efficiency under actual – not just theoretical – operating conditions.

Off-design is not only part load, but full load operation as well, with reduced entering condenser water temperatures (ECWTs)

REAL WORLD ENERGY PERFORMANCE

Johnson Controls pioneered the term "Real World Energy" to illustrate the energy saving potential of focusing on chiller performance during off design conditions. Off design is not only part load, but full load operation as well, with reduced entering condenser water temperatures (ECWTs). This is where chillers operate 99% of the time, and where operating costs add up.

YORK YD chillers are the only chillers designed to operate on a continuous basis with cold ECWT and full condenser flow at all load points, taking full advantage of Real World conditions. This type of operation benefits the cooling tower as well; reducing cycling of the fan motor and ensuring good coverage of the cooling fill.

The YD dual compressor chiller provides further energy savings by running in single compressor mode at part loads of 50% and lower. The chiller operates more efficiently by running with a single more fully loaded compressor. The two compressors share a common refrigerant circuit, thereby utilizing the full heat transfer surface available for part load single compressor operation.

YORK YD chillers offer the most efficient Real World operation of any chiller, meaning lower operating costs and an excellent return on your chiller investment.

OPEN DRIVE DESIGN

Hermetic-motor burnout can cause catastrophic damage to a chiller. The entire chiller must be cleaned, and the refrigerant replaced. YORK YD centrifugal chillers eliminate this risk by utilizing air-cooled motors. Refrigerant never comes in contact with the motor, preventing contamination of the rest of the chiller.

Insurance companies that offer policies on large air conditioning equipment often consider air-cooled motors a significant advantage over hermetic refrigerant cooled units.

The YD chiller uses two motors, each roughly half the size of a motor used on an equivalent size single compressor chiller. By staggering the start of these motors, the starting in-rush current of each smaller motor is less (Electromechanical and Solid State Starter only). This

Introduction (Cont'd)

provides a lower burden on the building electrical system. Also, use of two smaller motors allows low voltage compressor drive motors to be applied on larger chillers. This can be an advantage for applications where medium voltage power sources are not available.

HIGH-EFFICIENCY HEAT EXCHANGERS

YD chiller heat exchangers offer the latest technology in heat transfer surface design to give you maximum efficiency and compact design. Waterside and refrigerant-side design enhancements minimize both energy consumption and tube fouling.

SINGLE-STAGE COMPRESSOR DESIGN AND EFFICIENCY PROVEN IN THE MOST DEMANDING APPLICATIONS

Designed to be the most reliable chillers we've ever made, YORK YD centrifugal chillers incorporate single stage compressor design. With fewer moving parts and straightforward, efficient engineering, YORK single stage compressors have proven durability records in the U.S. Navy, hospitals, chemical plants, gas processing plants, and in other applications where minimal downtime is a crucial concern.

In thousands of installations worldwide, YORK single stage compressors are working to reduce energy costs. High strength aluminum alloy compressor impellers feature backward-curved vanes for high efficiency. Airfoil shaped pre-rotation vanes minimize flow disruption for the most efficient part load performance. Precisely positioned and tightly fitted, they allow the compressor to unload smoothly from 100% to minimum load for excellent operation in air conditioning applications.

PRECISION CONTROL OF COMPRESSOR OIL PRESSURE

Utilizing our expertise in variable speed drive technology and applications, Johnson Controls has moved beyond the fixed head and bypass approach of oil pressure control. The old approach only assures oil pressure at the outlet of the pump rather than at the compressor, and allows no adjustment during chiller operation. The YD chillers feature two variable speed drive oil pumps, monitoring and providing the right amount of oil flow to each compressor on a continuous basis. This design also provides sophisticated electronic monitoring and protection of the oil pump electrical supply, ensuring long life and reliable operation of the oil pump motor. Variable speed drive technology reduces oil pump power consumption, running only at the speed required, rather than at full head with a pressure regulating bypass valve.

FACTORY PACKAGING REDUCES FIELD LABOR COSTS

YORK YD centrifugal chillers are designed to keep installation costs low. Where installation access is not a problem, the K1 and K2 compressor size YD dual compressor chillers may be shipped completely packaged. In order to save on shipping and rigging costs, larger K3 to K7 compressor size units are disassembled into four major components: two drivelines, the evaporator, and the condenser. Piping break points are flanged, and wiring connections are simple plug connections to ensure a simple chiller commissioning utilizing a Variable Speed Drive or a factory-installed Solid-State Starter.

The YD chillers feature two variable speed drive oil pumps, monitoring and providing the right amount of oil flow to each compressor on a continuous basis.

Introduction (Cont'd)

AHRI CERTIFICATION PROGRAM

YORK YD chillers have been tested and certified by Air- Conditioning, Heating and Refrigeration Institute (AHRI) in accordance with the latest edition of AHRI Standard 550/590 (I-P) & 551/591 (up to 3,000 tons or 10.550 kW). Under this Certification Program, chillers are regularly tested in strict compliance with this Standard. This provides an independent, third-party verification of chiller performance. Refer to the AHRI site at: www.ahrinet.org/water_chilling+packages+using+vapor+compression+cycle+_water_cooled_.aspx for complete Program Scope, Inclusions, and Exclusions as some options listed herein fall outside the scope of the AHRI certification program. For verification of certification, go to the AHRI Directory at www.ahridirectory.org.

TAKE ADVANTAGE OF COLDER COOLING TOWER WATER TEMPERATURES

YORK YD centrifugal chillers have been designed to take full advantage of colder cooling tower water temperatures, which are naturally available during most operating hours. Considerable energy savings are available by letting tower water temperature drop, rather than artificially holding it above 75°F (23.9°C), especially at full load and full condenser flow, as some chillers require.

UL COMPLIANCE - YOUR ASSURANCE OF RELIABILITY

YORK YD centrifugal chillers are approved to UL Standard 1995 for listing by a qualified nationally recognized testing laboratory for the United States and Canada. Recognition of safety and reliability is your assurance of trouble free performance in day today building operation. Some chiller options or modifications may affect the UL compliance of the chiller. Some examples include: special motor enclosures (like TEFC, TEWAC, or TEAAC) or special panels (NEMA 4X) or special unit wiring options (anything other than NEMA 1). For further clarification, contact your local Johnson Controls Sales Office.

COMPUTERIZED PERFORMANCE RATINGS

Each chiller is custom-matched to meet the individual building load and energy requirements. Several standard heat exchanger tube bundle sizes and pass arrangements are available to provide the best possible match.

It is not practical to provide tabulated performance for each combination, as the energy requirements at both full and part load vary significantly with each heat exchanger and pass arrangement. Computerized ratings are available through each Johnson Controls Sales Office. These ratings can be tailored to specific job requirements.

Introduction (Cont'd)

OFF DESIGN PERFORMANCE

Since the vast majority of its operating hours are spent at off-design conditions, a chiller should be chosen not only to meet the full load design, but also for its ability to perform efficiently at lower loads and lower tower water temperatures. It is not uncommon for chillers with the same full load kW/ton to have an operating cost difference of over 10% due to part-load operation.

Part load information can be easily and accurately generated by use of the computer. And because it is so important to an owner's operating budget, this information has now been standardized within the AHRI Certification Program in the form of an Integrated Part Load Value (IPLV), and Non Standard Part Load Value (NPLV).

The IPLV/NPLV formulas from AHRI Standard 550/590 much more closely track actual chiller operations. A more detailed analysis must take into account actual building load profiles, and local weather data. Part load performance data should be obtained for each job using its own design criteria.

Sustainability Focus

OZONE-DEPLETION POTENTIAL (ODP)

The YORK YD chiller employs one of the most environmentally friendly refrigerants available today, HFC-134a, with no Ozone Depletion Potential (ODP) and no phase out date per the Montreal Protocol.

Ozone is a very small part of the atmosphere, but its presence is nevertheless vital to human well-being. Most ozone resides in the upper part of the atmosphere. This region, called the stratosphere, is more than 10 kilometers (6 miles) above the Earth's surface. There, about 90% of atmospheric ozone is contained in the "ozone layer," which shields us from harmful ultraviolet radiation from the sun. However, it was discovered in the mid-1970s that some human-produced chemicals could destroy ozone and deplete the ozone layer. The resulting increase in ultraviolet radiation at the Earth's surface may increase the incidences of skin cancer and eye cataracts. Following the discovery of this environmental issue, researchers focused on gaining a better understanding of this threat to the ozone layer.

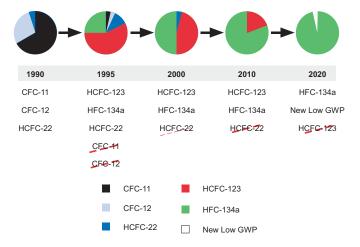
Monitoring stations showed that ozone-depleting chemicals were steadily increasing in the atmosphere. These trends were linked to growing production and use of chemicals like chlorofluorocarbons (CFCs) for refrigeration and air conditioning, foam blowing, and industrial cleaning. Measurements in the laboratory and the atmosphere characterized the chemical reactions that were involved in ozone destruction. Computer models employing this information could predict how much ozone depletion was occurring and how much more could occur in the future.

The typical usage of the refrigerant, the phase-out status by the Montreal Protocol and the global usage of refrigerant in tons is shown in the table below.

						2007 GLOBAL	
REFRIGERANT		COMMON USE	ODP	GWP	STATUS	USAGE (TONS)	
ပ	CFC-11	Centrifugals	1.00	5000	Phased Out	Trace	
CFC	CFC-12	Centrifugals	0.80	8500	Phased Out	Trace	
HCFC	HCFC-22	Scrolls, Screws, Unitary products	0.05	1700	Phasing Out	700,000	
Ĭ	HCFC-123	Centrifugals	0.02	120	Phasing Out	4,000	
						·	
	HFC-134a	Centrifugals, Screws	-	1300	No Phase Out	250,000	
	HFC-407c Screws, Scrolls		-	1600	No Phase Out		
HFC	HFC-410A	Scrolls, Unitary products	-	1890	No Phase Out	100,000	
	HFC-404A		-	3750	No Phase Out		
	HFC-245fa	Centrifugals	-	1020	No Phase Out	Trace	
Ĺ					1		
HFO	HFO-1234yf	Centrifugals	-	4	No Phase Out	New	
	HC-717 (NH3)	Screws, Centrifugals	-	1	No Phase Out		
HC (NATURAL REFR.)	HC-718 (water)	Absorption, Vapor Compression	-	0	No Phase Out		
(NATUF REFR.)	HC-290	'	_	3	No Phase Out		
S B	(propane) HC-600a						
ド	(butane)			3	No Phase Out		
	HC-744 (CO2)		-	1	No Phase Out		

Sustainability Focus (Cont'd)

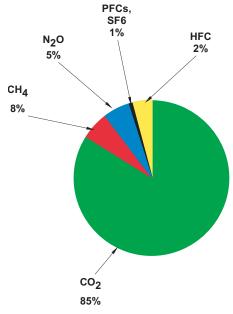
Observations of the ozone layer showed that depletion was indeed occurring. The most severe and most surprising ozone loss was discovered to be recurring in springtime over Antarctica. The loss in this region is commonly called the "ozone hole" because the ozone depletion is so large and localized. A thinning of the ozone layer also has been observed over other regions of the globe, such as the Arctic and northern middle latitudes. The work of many scientists throughout the world has provided a basis for building a broad and solid scientific understanding of the ozone depletion process. With this understanding, we know that ozone depletion is occurring and why. And, most important, we know that if ozone-depleting gases were to continue to accumulate in the atmosphere, the result would be more depletion of the ozone layer. In response to the prospect of increasing ozone depletion, the governments of the world crafted the 1987 United Nations Montreal Protocol as a global means to address this global issue. As a result of the broad compliance with the Protocol and its Amendments and Adjustments and, of great significance, industry's development of "ozone friendly" substitutes for the now-controlled chemicals, the total global accumulation of ozone-depleting gases has slowed and begun to decrease. This has reduced the risk of further ozone depletion.


THE MONTREAL PROTOCOL ADDRESSED CFC'S AND HCFC'S

The Montreal Protocol (MP) addressed CFCs and HCFCs with phase out schedules for all member parties of the MP based on the ODP characteristics. So this affects the first two categories of refrigerants listed in the table. Manufacturers in developed nations are in the final processes of converting from HCFCs to HFCs in accordance with the Montreal Protocol treaty. Markets in developing countries are already seeing a transition away from HCFCs ahead of legislative requirements.

HCFCs were used as a transitional refrigerant as they were a "Lesser Evil" and allowed the HVAC industry to quickly transition away from CFCs while maintaining energy efficiency. The fact remains that they destroy the ozone layer and are legislated to be completely phased out.

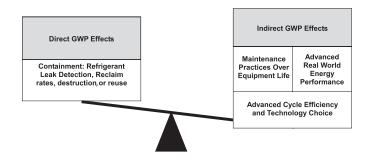
The Montreal Protocol does not extend to HFCs as they have no ODP nor does it extend to natural refrigerants for the same reason.


The chart below shows the growing use of HFC-134a in centrifugal chillers from 1995 up to 2010 and the forecast until the phase-out of HCFCs.

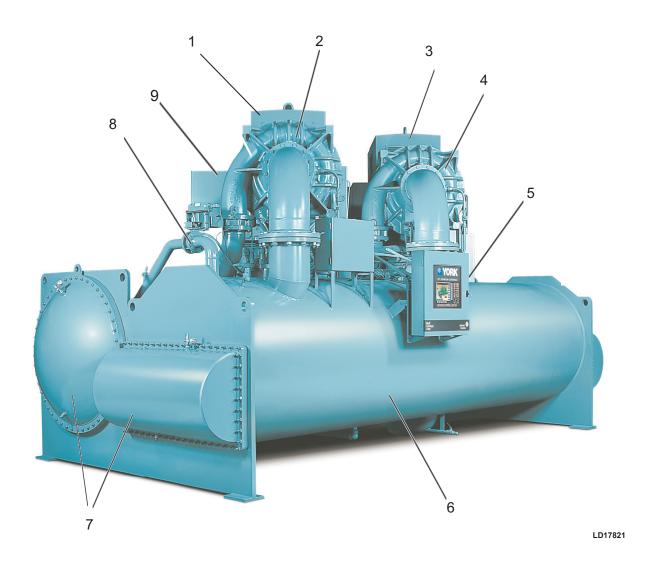
Sustainability Focus (Cont'd)

GLOBAL WARMING POTENTIAL (GWP)

Another main environmental topic is Global Warming potential (GWP), and when we talk about global warming we're primarily talking about smoke stacks and tail pipes. 85% of GWP is attributed to CO₂ emissions, while only about 2% is related to HFCs.



DIRECT & INDIRECT GLOBAL WARMING POTENTIAL


98% of the global warming potential of a centrifugal chiller is from the indirect effect or the greenhouse gases produced to generate the electricity to run the chiller. The YORK YD centrifugal chiller and its superior efficiency levels dramatically reduces the indirect GWP. Two percent of the GWP is from the direct effect or release of the refrigerant gases into the atmosphere.

Minimizing the total climatic impact (direct and indirect GWP) requires a comprehensive approach to refrigerant choice.

However, when we talk about the direct impact the YORK YD Centrifugal Chiller has on the environment we can make strides forward, like ensuring leak tight designs are created, and manufacturers are working to reduce refrigerant charges as much as possible.

Unit Components

NUMBER	ITEM
1	SYSTEM 1 MOTOR
2	SYSTEM 1 COMPRESSOR
3	SYSTEM 2 MOTOR
4	SYSTEM 2 COMPRESSOR
5	OPTIVIEW CONTROL PANEL
6	EVAPORATOR
7	COMPACT WATERBOXES
8	HOT GAS BYPASS (OPTIONAL)
9	LOW VOLTAGE UNIT MOUNTED VSD (OPTIONAL)

Equipment Overview

The YORK YD Centrifugal Liquid Chillers are completely factory packaged including the evaporator, condenser, compressor, motor, lubrication system, and all interconnecting unit piping and wiring. Larger (K3 to K7 compressor) YD chillers are disassembled for shipment.

The initial charge of refrigerant and oil is supplied for each chiller. Actual shipping procedures will depend on a number of project specific details.

The services of a Johnson Controls factory-trained or field service representative are incurred to supervise or perform the final leak testing, charging, the initial start up, and concurrent operator instructions.

Lubrication oil is force-fed to all bearings, gears and rotating surfaces by a variable speed drive pump which operates prior to startup...

COMPRESSOR

Each compressor is a single-stage centrifugal type powered by an open-drive electric motor. The casing is fully accessible with vertical circular joints and fabricated of close-grain cast iron. The complete operating assembly is removable from the compressor and scroll housing.

The rotor assembly consists of a heat-treated alloy steel drive shaft and impeller shaft with a high strength, cast aluminum alloy, fully shrouded impeller. The impeller is designed for balanced thrust and is dynamically balanced and overspeed tested for smooth, vibration free operation.

The insert type journal and thrust bearings are fabricated of aluminum alloy and are precision bored and axially grooved. The specially engineered, single helical gears with crowned teeth are designed so that more than one tooth is in contact at all times to provide even distribution of compressor load and quiet operation. Gears are integrally assembled in the compressor rotor support and are film lubricated. Each gear is individually mounted in its own journal and thrust bearings to isolate it from impeller and motor forces.

OPTISOUND™ CONTROL

The YORK OptiSound Control is a patented combination of centrifugal chiller hardware and software that reduces operational sound levels, expands the chiller operating range, and improves chiller performance. The OptiSound Control feature continuously monitors the characteristics of the compressor discharge gas and optimizes the diffuser spacing to minimize gas flow disruptions from the impeller. This innovative technology improves operating sound levels of the chiller an average of 7 dBA, and up to 13 dBA on the largest models. It can also reduce part load sound levels below the full load level.

In addition, the OptiSound Control provides the benefit of an expanded operating range. It improves performance and reliability by minimizing diffuser gas stall at off design operation, particularly conditions of very low load combined with little or no condenser water relief. The elimination of the gas stall condition can also result in improved chiller efficiency at off design conditions.

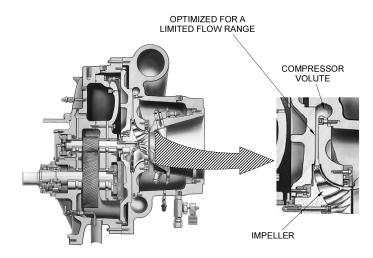


FIGURE 1 - TYPICAL OPTIMIZED CENTRIFUGAL COMPRESSOR

CAPACITY CONTROL

Pre rotation vanes (PRV) in each compressor modulate chiller capacity from 100% to 10% of design for normal air conditioning applications. Operation is by an external, electric PRV actuator which automatically controls the vane position to maintain a constant leaving chilled liquid temperature. Rugged airfoil shaped cast manganese bronze vanes are precisely positioned by solid vane linkages connected to the electric actuator.

Both compressors are operated when needed to satisfy the building load. At loads below 50%, a single compressor is able to handle the load more efficiently.

For units equipped with Variable Speed Drives (VSD), the capacity control will be achieved by the combined use of variable speed control and pre-rotation vanes (PRV) to provide fully modulating control from maximum to minimum load. For each condition the speed and the PRV position will be automatically optimized to maintain a constant leaving chilled liquid temperature.

LUBRICATION SYSTEM

Lubrication oil is force-fed to all bearings, gears and rotating surfaces by a variable speed drive pump which operates prior to startup, continuously during operation and during coast down. A gravity-fed oil reservoir is built into the top of each compressor to provide lubrication during coast down in the event of a power failure.

A common oil reservoir is mounted below the dual compressors. The reservoir contains a 2 HP submersible oil pump for each compressor. Each pump is built into a removable cover, one at each end of the reservoir.

Two 2 kW immersion oil heaters are provided, one mounted in each pump cover. The heaters are thermostatically controlled from the sump oil temperature sensor.

A refrigerant cooled oil cooler is provided after each oil pump, eliminating the need for field water piping. A thermostatically controlled expansion valve maintains the required oil temperature supply from each oil cooler to its compressor. Oil is filtered by externally mounted ½ micron replaceable cartridge oil filters, equipped with service valves. An automatic oil return system recovers any oil that may have migrated to the evaporator. Oil piping is completely factory installed.

MOTOR DRIVELINE

The compressor motors are open drip-proof, squirrel cage, induction type constructed to YORK design specifications. 60 hertz motors operate at 3570 rpm. 50 hertz motors operate at 2975 rpm.

The open motor is provided with a D-flange, and is factory mounted to a cast iron adaptor mounted on the compressor. This unique design allows the motor to be rigidly coupled to the compressor to provide factory alignment of motor and compressor shafts.

Motor drive shaft is directly connected to the compressor shaft with a flexible disc coupling. Coupling has all metal construction with no wearing parts to assure long life, and no lubrication requirements to provide low maintenance.

A large, steel terminal box with gasketed front access cover is provided on each motor for field connected conduit. There are six terminals (three for medium voltage) brought through the motor casing into the terminal box. Jumpers are furnished for three lead types of starting. Motor terminal lugs are not furnished. Overload/over current transformers are furnished with all units.

HEAT EXCHANGERS

Shells

Evaporator and condenser shells are fabricated from rolled carbon steel plates with fusion welded seams. Carbon steel tube sheets, drilled and reamed to accommodate the tubes, are welded to the end of each shell. Intermediate tube supports are fabricated from carbon steel plates, drilled and reamed to eliminate sharp edges, and spaced no more than four feet apart. The refrigerant side of each shell is designed, tested, and stamped in accordance with ASME Boiler and Pressure Vessel Code, Section VIII – Division I, or other pressure vessel code as appropriate.

Tubes

Heat exchanger tubes are state of the art, high efficiency, externally and internally enhanced type to provide optimum performance. Tubes in both the evaporator and condenser are 3/4" or 1" O.D. copper alloy and utilize the "skip fin" design, providing a smooth internal and external surface at each intermediate tube support. This provides extra wall thickness (up to twice as thick) and non work hardened copper at the support location, extending the life of the heat exchangers. Each tube is roller expanded into the tube sheets providing a leak proof seal, and is individually replaceable.

Evaporator

The evaporator is a shell and tube, flooded type heat exchanger. A distributor trough provides uniform distribution of refrigerant over the entire shell length to yield optimum heat transfer. Mesh eliminators are located above the tube bundle to prevent liquid refrigerant carryover into the compressor. A 1.5" (38mm) liquid level sight glass is conveniently located on the side of the shell to aid in determining proper refrigerant charge. The evaporator shell contains a single relief valve arrangement set at 180 psig (12.4 barg). A 1" refrigerant charging valve is provided.

Condenser

The condenser is a shell and tube type, with discharge gas diffuser to prevent direct high velocity impingement on the tubes. The diffusers provide dynamic pressure recovery and enhanced chiller efficiency. An integral sub-cooler is located at the bottom of the condenser shell providing highly effective liquid refrigerant subcooling to provide the highest cycle efficiency. The condenser contains dual refrigerant relief valves set at 235 psig (16.2 barg).

Water Boxes

The removable water boxes are fabricated of steel. The design working pressure is 150 psig (10.3 barg) and the boxes are tested at 225 psig (15.5 barg). Integral steel water baffles are located and welded within the water box to provide the required pass arrangements. Stub-out water nozzle connections with ANSI/AWWA C-606 couplings grooves are welded to the water boxes. These nozzle connections are suitable for ANSI/AWWA C-606 couplings, welding or flanges, and are capped for shipment. Plugged drain and vent connections are provided in each water box.

WATER FLOW SWITCHES

Thermal-type water flow switches are factory mounted in the chilled and condenser water nozzles, and are factory wired to the OptiView control panel. These solid state flow sensors have a small internal heating element. They use the cooling effect of the flowing fluid to sense when an adequate flow rate has been established. The sealed sensor probe is 316 stainless steel, which is suited to very high working pressures.

REFRIGERANT FLOW CONTROL

Refrigerant flow to the evaporator is controlled by the YORK variable orifice control system. Liquid refrigerant level is continuously monitored to provide optimum subcooler, condenser and evaporator performance. The variable orifice electronically adjusts to all real world operating conditions, providing the most efficient and reliable operation of refrigerant flow control.

COMPRESSOR DISCHARGE VALVES

Automated valves are provided in the discharge of each compressor. The discharge valve ensures that there is no backspin of the non running compressor when the chiller is in single compressor operating mode. These valves are cycled by the control panel during the start and stop sequence of the lag (2nd) compressor.

ISOLATION MOUNTING

The unit is provided with vibration isolation mounts of nominal 1" operating height. The pads have a neoprene pad to contact the foundation, bonded to a steel plate. The vibration isolation pads assemblies mount under steel plates affixed to the chiller tube sheets.

REFRIGERANT CONTAINMENT

The standard unit has been designed as a complete and compact factory packaged chiller. As such, it has minimum joints from which refrigerant can leak. The entire assembly has been thoroughly leak tested at the factory prior to shipment. The YORK chiller includes service valves conveniently located to facilitate transfer of refrigerant to a remote refrigerant storage/recycling system.

PAINT

Exterior surfaces are protected with one coat of Caribbean blue, durable alkyd-modified, vinyl enamel, machinery paint.

SHIPMENT

K1 and K2 compressor size units may ship as a complete assembly. K3 to K7 compressor size units are disassembled for shipment. The two drivelines are removed and skidded. The evaporator and condenser shells are split. The control center, oil pump panel and wire remain mounted on the evaporator shell. The oil sump housing remains attached to the condenser. Connections are closed and the heat exchanger refrigerant sides are charged with nitrogen. Electrical boxes and the motor openings are covered with shrink wrap plastic.

OptiView Control Center

NOTE: Please refer to the OptiVew Control Center Operator's Manual for a complete description of features and functionality.

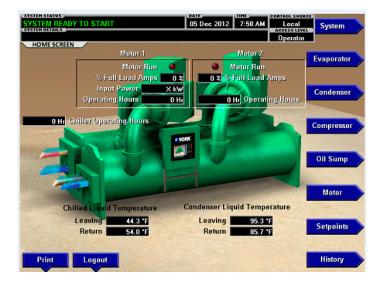
The YORK OptiView Control Center is a factory mounted, wired and tested microprocessor based control system for HFC-134a centrifugal chillers. For the YD, it controls the leaving chilled liquid temperature and limits the motor current via control of the Variable Speed Drive (VSD) (if used).

LD19212

The panel comes configured with a full screen LCD Graphic Display mounted in the middle of a keypad interface with soft keys, which are redefined with one keystroke based on the screen displayed at the time. The graphic display allows the presentation of several operating parameters at once. In addition, the operator may view a graphical representation of the historical operation of the chiller as well as the present operation. For the novice user, the locations of various chiller parameters are clearly and intuitively marked. Instructions for specific operations are provided on many of the screens. To prevent unauthorized changes of set points and operating conditions, security access is provided with three different levels of access and passwords.

The graphic display also allows information to be represented in both English (temperatures in °F and pressures in PSIG) and Metric (temperatures in °C and pressures in kPa) mode. The advantages are most apparent, however, in the ability to display many languages.

The Control Center continually monitors the system operation and records the cause of any shutdowns (Safety, Cycling or Normal). This information is recorded in memory and is preserved even through a power failure condition. The user may recall it for viewing at any time. During operation, the user is continually advised of the operating conditions by various status and warning messages. In addition, it may be configured to notify the user of certain conditions via alarms. The Control Center expands the capabilities of remote control and communications. By providing a common networking protocol through the


Building Automation System (BAS), YORK Chillers not only work well individually, but also as a team. This new protocol allows increased remote control of the chiller, as well as 24 hour performance monitoring via a remote site. In addition, compatibility is maintained with the present network of BAS communications. The chiller also maintains the standard digital remote capabilities as well. Both of these remote control capabilities allow for the standard Energy Management System (EMS) interface:

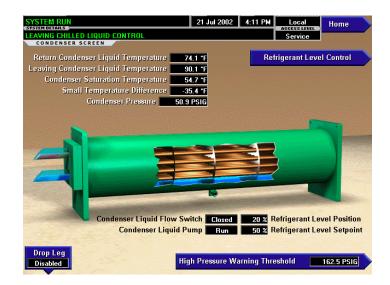
- · Remote Start
- Remote Stop
- Remote Leaving Chilled Liquid Temperature Setpoint adjustment (0 to 10VDC, 2 to 10VDC, 0 to 20mA or 4 to 20mA or Pulse Width Modulation)
- Remote Current Limit Setpoint adjustment (0 to 10VDC, 2 to 10VDC, 0 to 20mA or 4 to 20mA or Pulse Width Modulation)
- · Remote READY TO START Contacts
- Safety Shutdown Contacts
- · Cycling Shutdown Contacts

The following are examples of the information displayed on some of the more important screens:

SYSTEM SCREEN

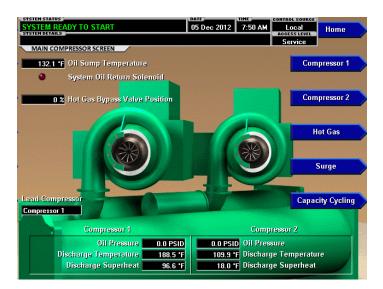
This screen gives a general overview of common chiller parameters.

EVAPORATOR SCREEN


This screen displays a cutaway view of the chiller evaporator. All setpoints relating to the evaporator side of the chiller are maintained on this screen. Animation of the evaporation process indicates whether the chiller is presently in a RUN condition (bubbling) and liquid flow in the pipes is indicated by alternating shades of color moving in and out of the pipes.

00301vipc

CONDENSER SCREEN


This screen displays a cutaway view of the chiller condenser. All setpoints relating to the condenser side of the chiller are maintained on this screen. Animation indicates condenser liquid flow.

LD08603

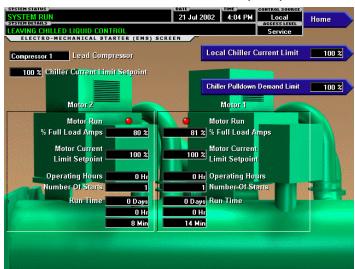
COMPRESSOR SCREEN

This screen displays a cutaway view of the chiller compressors, revealing the impellers, and shows all conditions associated with the compressor. Animation of the compressor impeller indicates whether the chiller is presently in a RUN condition. This screen also serves as a gateway to subscreens Hot Gas Bypass, Surge Protection, Compressor Capacity Cycling Setup and viewing and calibration of individual compressor functions.

LD18362

VARIABLE GEOMETRY DIFFUSER SCREEN

This screen can be accessed from the compressor screen and gives the basic stall, position, and pressure details.



LD18363

STARTER SCREEN

This screen displays all information pertaining to the YORK Electro-Mechanical Starter, Solid-State Starter or a Variable Speed Drive Screen depending on chiller configuration .

Electro-Mechanical Starter (EMS)

Low Voltage Variable Speed Drive (VSD)

LD08624

LD18364

CAPACITY CONTROL SCREEN

This screen allows the user to specify the chiller load conditions under which the lag compressor is cycled on and off. Both compressors are not started at the same time. The lead compressor is started first. If it does not meet the load requirements as established with the following setpoints, the lag compressor is started. After the lag compressor is running, it will be shutdown if the load decreases to the point established by the following setpoints.

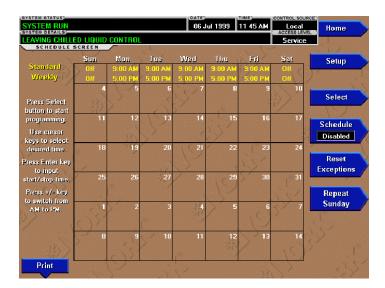
LD18365

SETPOINTS SCREEN

This screen provides a convenient location for programming the most common chiller control setpoints. Changing setpoints and setup requires proper password access. This screen also serves as a gateway to a subscreen for defining the setup of general system parameters.

LD08625

SETUP SCREEN


This screen is the top level of the general configuration parameters. It allows programming of the time and date, along with specifications as to how the time will be displayed. In addition, the chiller configuration as determined by the microprocessor and program switches is displayed.

LD18366

SCHEDULE SCREEN


This screen allows the user to program the Start/Stop times for any day of the week up to 6 weeks in advance. The user also has the ability to define a standard set of Start/Stop times that are utilized every week or specify exceptions to create a special week.

00331vipc

USER SCREEN

This screen allows definition of the language for the chiller to display and defines the unit of measure.

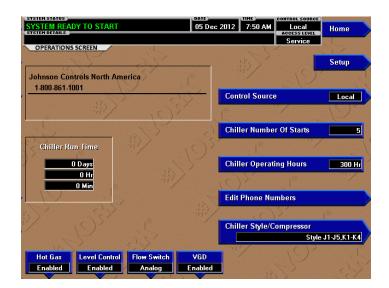
LD18367

PRINTER SCREEN

This screen allows definition of the necessary communications parameters for the printer. A printer or a PC can be connected to gather status reports, event logs, and history reports.

00319vipc

SALES ORDER SCREEN


This screen displays the order parameters. This information is loaded at the factory or by the installation/service technician.

LD18368

OPERATIONS SCREEN

This screen allows definition of parameters related to the operation of the chiller. This includes the control source (Local, Digital Remote, Analog Remote, Modem Remote or BAS Remote). Also displayed is Run Time, Operating Hours, and number of starts for the chiller.

LD18368

HISTORY SCREEN

This screen allows the user to browse through the last ten faults; either safety or cycling shutdowns with the conditions while the chiller is running or stopped. The faults are color coded for ease in determining the severity at a glance, recording the date, time and description.

The OptiView Control Center continually monitors the operating system displaying and recording the cause of any shutdowns (Safety, Cycling or Normal). The condition of the chiller is displayed at the System Status line that contains a message describing the operating state of the chiller; whether it is stopped, running, starting or shutting down. A System Details line displays Warning, Cycling, Safety, Start Inhibit and other messages that provide further details of Status Bar messages. Messages are color-coded: Green – Normal Operations, Yellow - Warnings, Orange – Cycling Shutdowns, and Red – Safety Shutdowns. These aid in identifying problems quickly.

LD18369

TRENDING SCREEN

On this screen, up to 6 user-selected parameters selected from a list of over 140, can be plotted in a time-line graph format. The graph can be customized to record points once every second up to once every hour. There are two types of charts that can be created: a single or continuous screen. The single screen collects data for one screen width (450 data points across the X-axis) then stops. The continuous screen keeps collecting the data but the oldest data drops off the graph from left to right at the next data collection interval. For ease of identification, each plotted parameter, title and associated Y-axis labeling is color coordinated.

LD00472VIPC

Starters and Drives

JOHNSON CONTROLS OPTISPEED™ DRIVE STARTER

When a YORK YD chiller is equipped with a variable speed drive, It is designed to vary the compressor motor speed by controlling the frequency and voltage of the electrical power to the motor. The capacity control logic automatically adjusts motor speed and compressor pre-rotation vane position independently for maximum part load efficiency by analyzing information fed to it by sensors located throughout the chiller.

The variable speed drive was specifically developed for commercial air-conditioning applications. No one matches Johnson Controls experience in the application of variable speed drive technology to chillers. Since pioneering the concept in 1978, Johnson Controls has installed more variable speed drive chillers than all other chiller manufacturers combined.

Variable speed drives will save in both single-chiller installations and multiple-chiller installations. In multiple-chiller installations, cycling chillers off as the building load falls will result in higher loads on the remaining chillers. This would seem to reduce the opportunity for drives to save energy. However, even though chiller loads remain high, entering condenser-water temperature has most likely fallen. And, reductions in entering condenser water temperature offer a far greater potential to enhance chiller efficiency than load reductions do. Therefore, variable speed drive will deliver major energy savings in multiple-chiller plants, too.

The OptiSpeed Drive is available for low and medium voltage options for the compressor motor (See Table 1, below).

TABLE 1 - OPTISPEED DRIVE STARTER OPTION

LOW VOLTAGE STARTERS												
		60	Hz		50 Hz							
UNIT MOUNTED	38	0V	46	0V	380V	400V	41	5V				
Citi modities)	<)	<	Х	Х	Х					
60 HZ MEDIUM VOLTAGE STARTERS												
	2300V 3300V		4000V	4160V	6000V	6600V	12470V	13200V				
FLOOR MOUNTED	х х		X X		0	0	0	0				
	50 HZ MEDIUM VOLTAGE STARTERS											
FLOOR MOUNTED	2300V 3000V		3300V	6000V	6600V	10000V	10000V 11000					
			Х	0	0	0	0					

O=Available by Special Quotes (SQ)

LOW VOLTAGE OPTISPEED DRIVE

The Low Voltage OptiSpeed variable speed drive is factory-packaged and mounted on the YORK YD chiller. It is designed to vary the compressor motor speed by controlling the frequency and voltage of the electrical power to the motor. The capacity control logic automatically adjusts motor speed and compressor pre-rotation vane position independently for maximum part load efficiency by analyzing information fed to it by sensors located throughout the chiller.

The variable speed drive is mounted in a NEMA-1 enclosure with all power and control wiring between the drive and chiller factory-installed. Electrical lugs for incoming power wiring are provided.

The variable speed drive provides automatic displacement power factor correction to 0.95 or better at all load conditions. Separate displacement power factor correction capacitors are not required. The displacement power factor is 0.98 or better when the optional harmonic filter is provided. See Table 2 for additional advantages of variable speed drives.

TABLE 2 - LOW VOLTAGE OPTISPEED VARIABLE SPEED DRIVE

STARTER TYPE	ADVANTAGES
OPTISPEED VARIABLE SPEED DRIVE (LOW VOLTAGE)	Lowest chiller life cycle through part load energy savings. Application-specific designs enable efficient, precise load control and seamless integration with equipment control panel and BAS. Soft start with input current less than full load current. Smooth acceleration reduces stresses on motor and driveline. Reduces compressor sound levels at most operating conditions. Rugged and reliable with no moving parts. IEEE-519 2014 compliant if used with an optional harmonic filter.

Standard features include: a door interlocked lockable circuit breaker; UL/cUL listed ground fault protection; over-voltage and under-voltage protection; 3-phase sensing motor over-current protection; single-phase protection; insensitive to phase rotation; over-temperature protection; digital readout at the OptiView Control Center of:

- · Output Frequency
- · Output Voltage
- · 3-phase output current
- · Input Power (kW)
- · Self diagnostic service parameters
- Kilowatt-Hours (kWh)

An optional harmonic filter limits electrical power supply distortion from the variable speed drive to help the building comply with the guidelines of IEEE- 519 2014. The filter is unit mounted within the same NEMA-1 enclosure and is UL listed. The following digital readout is standard with the optional filter:

- Input kVA
- · Total power-factor
- 3-phase input voltage
- · 3-phase input current
- 3-phase input voltage total harmonic distortion (THD)
- 3-phase input current total demand distortion (TDD)
- · Self-diagnostic service parameters

MEDIUM VOLTAGE OPTISPEED DRIVE

A variable speed drive is factory-packaged and configured for easy remote mounting. It is designed to vary the compressor motor speed by controlling the frequency and voltage of the electrical power to the motor. The capacity control logic automatically adjusts motor speed and compressor pre-rotation vane position independently for maximum part load efficiency by analyzing information fed to it by sensors located throughout the chiller.

The variable speed drive is mounted in a NEMA-1 enclosure and comes with a certification label from a nationally recognized testing laboratory. The connection points between the drive and chiller are factory labeled. Electrical lugs for incoming power wiring are **NOT** provided.

The variable speed drive provides automatic displacement power factor correction to 0.98 or better at all load conditions. Separate displacement power factor correction capacitors are not required.

Standard features include: a lockable door interlocked disconnect switch; UL listed ground fault protection; over-voltage and under-voltage protection; 3-phase sensing motor over-current protection; single-phase protection; insensitive to phase rotation; over-temperature protection; digital readout at the Control Center of:

- · Output frequency
- 3-phase output voltage
- · 3-phase output current
- Input power (kW)
- Self diagnostic service parameters
- · Kilowatt-hours (kWh)
- Input KVA
- · Total power-factor
- · 3-phase input voltage
- · 3-phase input current
- · Self diagnostic service parameters

The 24 pulse design limits the electrical power supply distortion from the variable speed drive to comply with the guidelines of IEEE- 519 2014.

TABLE 3 - MEDIUM VOLTAGE OPTISPEED VARIABLE SPEED DRIVE

STARTER TYPE	ADVANTAGES
OPTISPEED VARIABLE SPEED DRIVE (MEDIUM VOLTAGE)	Lowest chiller life cycle through part load energy savings. Application-specific designs enable efficient, precise load control and seamless integration with equipment control panel and BAS. Soft start with input current less than full load current. Smooth acceleration reduces stresses on motor and driveline. Reduces compressor sound levels at most operating conditions. Rugged and reliable with no moving parts. IEEE-519 2014 compliant. No optional filter needed. Multi-level PWM output closely simulates a true sine wave, allowing the use of standard motors and bearings.

MEDIUM VOLTAGE SOLID-STATE STARTER

The Medium Voltage Solid-State Starter is a reduced voltage in-line bypass starter that controls and maintains a constant current flow to the motor during startup. Available for 2300 - 4160 volts (see Table 4), the starter enclosure is NEMA-1, with a hinged access door with lock and key. Electrical lugs for incoming power wiring are not provided.

TABLE 4 - SOLID-STATE STARTER (MEDIUM VOLTAGE)

STARTER TYPE	ADVANTAGES
UNIT MOUNTED	Smooth, controlled start profile. Unit mounted, factory wired and tested. Rugged and reliable with no moving parts. Application-specific designs enable seamless integration with equipment control panel and BAS.

Standard Features include digital readout at the Control Center of the following:

Display Only

- · 3-phase input voltage
- · 3-phase current
- Input Power (kW)
- · Kilowatt-Hours (KWH)
- · Starter Model
- Motor Run (LED)
- Motor Current % Full Load Amps
- · Current Limit Setpoints
- · Pulldown Demand Time Left

Programmable

- · Local Motor Current Limit
- · Pulldown Demand Limit
- · Pulldown Demand Time

Other features include: low line voltage; 115V control transformer; three-leg motor current sensing overloads; phase rotation and single-phase failure protection; high temperature safety protection; motor current imbalance and under-voltage safeties; open and shorted SCR protection; momentary power interruption protection. The Solid-State Starter is air cooled generating about the same heat as an auto-transformer E-M starter. Ground fault protection and surge protection are also standard features. The 50,000 amp short circuit withstand rating is in accordance with UL Standard 508. See Table 5 for availability of Solid-State Starters.

TABLE 5 - MEDIUM VOLTAGE SOLID-STATE STARTER

TILL C MEDICAL COLINGE COLID CHARLEST										
MEDIUM VOLTAGE SOLID-		50 HZ								
STATE STARTER	2300V	3300V	4000V	4160V	3300V					
FLOOR MOUNTED	X	×	Х	×	×					

ELECTRO-MECHANICAL STARTER - (FIELD-INSTALLED)

A field installed, electro-mechanical compressor motor starter assembly is available, selected for proper size and type for job requirements and in accordance with YORK Engineering Standard (R-1137) for Starters. The starter assembly has contactors and accessories for controlling the two compressor motors per chiller.

Characteristics

For comparison purposes, here is a description of some of the general characteristics of electromechanical starters. Until the development of the Solid State Starter, all centrifugal chillers required the use of starters using electro-mechanical contactors, which are limited to operating totally ON, or totally OFF. There was no alternative to this mechanical equipment with its inability to control applied voltage or power. This contrasts markedly with the YORK Medium Voltage Solid State Starter which automatically maintains a predetermined current during starting, regardless of variations in line voltage or motor load, to give optimum acceleration without surges. Even with the addition of transformers, reactors, resistors and additional contactors, timers and relays, the mechanical controllers offer limited adjustment, no positive control during starting and impose an objectionable transition spike. Some also require modified motors. A field-installed, electro-mechanical compressor motor starter is available, selected for proper size and type for job requirements and in accordance with Johnson Controls Engineering Standard (R-1137) for Starters. See Table 6.

TABLE 6 - ELECTRO-MECHANICAL STARTER

STARTER OPTIONS	LOW VOLTAGE / FREQUENCY										
LV ACROSS THE LINE			60Hz		50Hz						
	380V	440V	460V	480V	575V	380V 400V 415					
(FLOOR MOUNTED)	Χ	X	X	X	X	X	X	X			
LV STAR-DELTA			60Hz		50Hz						
CLOSED	380V	440V	460V	480V	575V	380V	400V	415V			
(FLOOR MOUNTED)	Χ	X X X X X X X									

STARTER OPTIONS	MEDIUM VOLTAGE / FREQUENCY													
MV ACROSS	60Hz								50Hz					
THE LINE	2300	3300	4000	4160	6600	12470	13200	2300	3000	3300	6600	10000	11000	
(FLOOR MOUNTED)	Х	Х	Х	Х	0	0	0	Х	Х	Х	0	0	0	
MV AUTO-		60Hz							50Hz					
TRANSFORMER 65%	2300	3300	4000	4160	6600	12470	13200	2300	3000	3300	6600	10000	11000	
(FLOOR MOUNTED)	Х	Х	X	Х	0	0	0	Х	X*	X*	0	0	0	
MV AUTO-		60Hz								50	Hz			
TRANSFORMER 80%	2300	3300	4000	4160	6600	12470	13200	2300	3000	3300	6600	10000	11000	
(FLOOR MOUNTED)	Х	Х	Х	Х	0	0	0	Х	Х	Х	0	0	0	

^{*} Not available with 5DJ motor / O= available by Special Quote (SQ)

The most common failure mode of mechanical contactors is OFF. This occurs due to the coil open-circuiting or failure of a pole to make an electrical contact when it closes. However, failure in the ON mode is not completely uncommon and can be a more dramatic type of failure, particularly if this failure mode exists at the same time that equipment safety controls are demanding a shutdown.

When contacts are "made," the current builds up to its maximum value from zero, but when contacts are separated the current tends to flow through the gap thus formed and causes an arc. This arcing depends upon the voltage between the separating contacts. For medium voltage starters, the use of vacuum contactors mitigates this problem somewhat by providing an environment to extinguish the arc. In the alternating current circuit, the separation of contacts may take place when the current is zero or maximum or at any value in between. An alternating current passes through zero and reverses its polarity twice during each cycle. If two or more contacts, one in each leg of a polyphase system, are separated simultaneously, the current values in each will vary. In a three-phase system, if one contact has zero current when opened, the other two contacts will have 86.6% of their maximum values, as an example. Additionally, when inductive circuits are broken, the voltage is increased at the contacts due to the counter (induced) EMF of the circuit. The instant the contacts separate, the voltage between them momentarily rises from zero to the maximum of the circuit, or higher if inductance is present in the circuit. In practice, every time the contacts close, they bounce. When they bounce, they arc. The arcing occurs as the contacts make or break may result in rapid and excessive erosion of the contacts, causing prematurely short contact life.

Types

YORK chillers are designed for use with the following types of electro-mechanical starters, here briefly described.

Across-the-Line (ACL)

These are the simplest and lowest-cost starters available. They apply full voltage to the three motor leads at the instant of starting. Since inrush is 100% of LRA and starting torque is 100%, this is the roughest type of starting on the motor and drive- line. In physical size, the ACL is the smallest of electro-mechanical starters and there is no transition surge. In most areas, utilities will not permit the use of this type of starter for chiller-size motors because of their large current draw on startup.

Auto Transformer (AT)

These starters are reduced-voltage starters. Transformers are used to step down the voltage to the motor during startup. The result is reduced inrush current and starting torque at the level of 42% or 64% depending upon whether 65% or 80% voltage taps are used. They provide closed transition (with three-lead motors) with reduced line disturbance.

Star-Delta Starters

During starting, the motor is connected in a Star or Wye configuration. This reduces the voltage to the motor stator by a factor of three. This 1/3 voltage results in 1/3 current into the motor at start and 1/3 torque to the shaft. Centrifugal compressor starting torque requirements are low enough to allow the motor to start at 1/3 of full load torque.

Accessories and Modifications

BAS REMOTE CONTROL

A communication interface permitting an exchange of chiller data with a BACnet MS/TP, Modbus RTU, LONworks or N2 Metasys network is available by means of an optional E-Link®Gateway. The Johnson Controls E-Link® Gateway mounts conveniently inside the Optiview panel and allows remote BAS networks to monitor values and issue commands to the chiller to control operation.

FACTORY INSULATION OF EVAPORATOR

Factory-applied thermal insulation of the flexible, closed-cell plastic type, 3/4" (19 mm) thick is attached with vapor-proof cement to the evaporator shell, tube sheets, suction connection, and (as necessary) to the auxiliary tubing. Not included is the insulation of waterboxes and nozzles. This insulation will normally prevent condensation in environments with relative humidities up to 75% and dry bulb temperatures ranging from 50° to 90°F (10° to 32.2°C). 1-1/2" (38 mm) thick insulation is also available for relative humidities up to 90% and dry bulb temperatures ranging from 50° to 90°F (10° to 32.2°C).

KNOCK-DOWN SHIPMENT

The YD Chiller with K1-K2 compressor can be shipped knocked down into major subassemblies (evaporator, condenser, driveline, etc.) as required to rig into tight spaces. This is particularly convenient for existing buildings where equipment room access does not allow rigging a factory packaged chiller.

HINGES AND DAVITS ARMS

Hinges and/or davit arms are available to ease serviceability. Hinges on the nozzle end of a compact water box still require that facility water piping be disconnected.

MARINE WATER BOXES

Marine water boxes allow service access for cleaning of the heat exchanger tubes without the need to break the water piping. Bolted-on covers are arranged for convenient access. ANSI/AWWA C-606 couplings nozzle connections are standard; flanges are optional. Marine water boxes are available for condenser and/or evaporator.

REFRIGERANT STORAGE/RECYCLING SYSTEM

A refrigerant storage/recycling system is a self-contained package consisting of a refrigerant compressor with oil separator, storage receiver, water-cooled condenser, filter drier and necessary valves and hoses to remove, replace and distill refrigerant. All necessary controls and safety devices are a permanent part of the system.

Accessories and Modifications (Cont'd)

SPECIAL MOTORS ENCLOSURES

There are job applications, primarily in manufacturing plants, and process applications, where more motor protection is required. Listed below are several alternatives. NOTE: Chiller certification to UL by a third party could be affected. Contact a Johnson Controls sales office for a specific selection.

Weather-Protected Type I Motors (WP-I) - A Weather-Protected Type I motor is an open machine with its ventilating passages constructed to prevent the passage of a cylindrical rod 3/4" in diameter. This affords protection against intrusion of rodents and some types of debris. These are regularly used in the pulp industry and where grime is present.

Weather-Protected Type II Motors (WP-II) - A Weather-Protected Type II motor has, in addition to the enclosure defined for Weather-Protected Type I motor, ventilating passages at both intake and exhaust so arranged that high-velocity air and air-borne particles, blown into the motor, can be discharged without entering the internal ventilating passages leading directly to the electric parts of the machine itself. Space heaters are required with WP-II.

Totally Enclosed Fan-Cooled Motors (TEFC) - TEFC motors are used where the location is extremely dirty, dusty, or wet, both indoors and outdoors. A totally enclosed fan-cooled unit is enclosed to prevent the free exchange of air between the inside and outside of the case but not sufficiently enclosed as to be termed air-tight. It is air-cooled by means of a fully guarded fan blowing cooling air over the outside of the motor. The fan is externally mounted on the motor shaft.

Totally Enclosed Air-to-Air Cooled (TEAAC) - TEAAC motors are used when the environment is dirty or corrosive. A TEAAC motor is a totally enclosed motor, cooled by circulating the internal air through an air-to-air heat exchanger.

Totally Enclosed Water-to-Air Cooled (TEWAC) - TEWAC motors are used when the environment is dirty or corrosive, in hazardous areas, or where minimum noise levels are required. A TEWAC motor is a totally enclosed machine which is cooled by circulating internal air which, in turn, is cooled by circulating water. It is provided with an internal water-cooled heat exchanger for cooling the internal air and fans, integral with the rotor shaft for circulating the internal air.

SPRING ISOLATION MOUNTING

Spring isolation mounting is available instead of standard isolation mounting pads when desired. Four level-adjusting, spring-type vibration isolator assemblies with non-skid pads are provided for field installation. Isolators are designed for one-inch (25 mm) deflection.

WATER FLANGES

Four 150 lb. ANSI raised-face flanges for condenser and evaporator water connections, are factory welded to water nozzles. Companion flanges, bolts, nuts and gaskets are not included.

Application Data

The following discussion is a user's guide in the application and installation of YD chillers to ensure the reliable, trouble-free life for which this equipment was designed. While this guide is directed towards normal, water-chilling applications, the Johnson Controls sales representative can provide complete recommendations on other types of applications.

LOCATION

YD chillers are virtually vibration free and may generally be located at any level in a building where the construction will support the total system operating weight.

The unit site must be a floor, mounting pad or foundation which is level within 1/4" (6.4 mm) and capable of supporting the operating weight of the unit.

Sufficient clearance to permit normal service and maintenance work should be provided all around and above the unit. Additional space should be provided at one end of the unit to permit cleaning of evaporator and condenser tubes as required. A doorway or other properly located opening may be used.

The chiller should be installed in an indoor location where temperatures range from 40°F to 104°F (4.4°C to 40°C). The dew point temperature in the equipment room must be below the entering condenser water temperature to prevent condensing water vapor inside of the solid state starter or low voltage variable speed drive cabinet (if applicable). Applications using cooling sources other than evaporative or closed loop air exchange methods need to request a factory-supplied temperature control valve to prevent condensation inside the solid state starter or low voltage variable speed drive cabinet (if applicable). Other areas susceptible to water vapor condensate are outside of the condenser shell and condenser water boxes. Example applications include when the condenser water comes from chilled water, wells, river, or other low temperature fluids.

WATER CIRCUITS

Flow Rate — For normal water chilling duty, evaporator and condenser flow rates are permitted at water velocity levels in the heat exchangers tubes of between 3 ft/sec and 12 ft/sec (0.91 m/s and 3.66 m/s) for constant flow applications. Variable flow applications are possible, and initial chiller selections should be made accordingly to allow proper range of flow while maintaining the minimum velocity indicated at the certified rating for the unit. Variable flow in the condenser is not recommended, as it generally raises the energy consumption of the system by keeping the condenser pressure high in the chiller. Additionally, the rate of fouling in the condenser will increase at lower water velocities associated with variable flow, raising system maintenance costs. Cooling towers typically have narrow ranges of operation with respect to flow rates, and will be more effective with full design flow. Ref. Table 8 for flow limits.

Temperature Ranges – For normal water chilling duty, leaving chilled water temperatures may be selected between 38°F (3.3°C) [36°F (2.2°C) with Smart Freeze enabled] and 70°F (21.1°C) to obtain temperature deltas between entering chilled and leaving chilled water temperature of 3°F up to 30°F (1.7°C and 16.7°C).

Water Quality – The practical and economical application of liquid chillers requires that the quality of the water supply for the condenser and evaporator be analyzed by a water treatment specialist. Water quality may affect the performance of any chiller through corrosion, deposition of heat-resistant scale, sedimentation or organic growth. These will degrade chiller performance and increase operating and maintenance costs. Normally, performance may be maintained by corrective water treatment and periodic cleaning of tubes. If water conditions exist which cannot be corrected by proper water treatment, it may be necessary to provide a larger allowance for fouling, and/or to specify special materials of construction. See the Application Guide 160.00-AD5 for more details.

General Piping – All chilled water and condenser water piping should be designed and installed in accordance with accepted piping practice. Chilled water and condenser water pumps should be located to discharge through the chiller to assure positive pressure and flow through the unit. Piping should include offsets to provide flexibility and should be arranged to prevent drainage of water from the evaporator and condenser when the pumps are shut off. Piping should be adequately supported and braced independently of the chiller to avoid the imposition of strain on chiller components. Hangers must allow for alignment of the pipe. Isolators in the piping and in the hangers are highly desirable in achieving sound and vibration control.

Convenience Considerations – To facilitate the performance of routine maintenance work, some or all of the following steps may be taken by the purchaser. Evaporator and condenser water boxes are equipped with plugged vent and drain connections. If desired, vent and drain valves may be installed with or without piping to an open drain. Pressure gauges with stopcocks and stop valves may be installed in the inlets and outlets of the condenser and chilled water line as close as possible to the chiller. An overhead monorail or beam may be used to facilitate servicing.

Connections – The standard chiller is designed for 150 PSIG (10.3 bar) design working pressure in both the chilled water and condenser water circuits. The connections (water nozzles) to these circuits are furnished with grooves to ANSI/AWWA C 606 Standard for grooved and shouldered joints. Piping should be arranged for ease of disassembly at the unit for tube cleaning. All water piping should be thoroughly cleaned of all dirt and debris before final connections are made to the chiller.

Fluid Strainer — A fluid strainer with perforated holes no larger than 1/8" (3.2 mm) must be field-installed in the chilled fluid inlet line as close as possible to the chiller. If located close enough to the chiller, the chilled fluid pump may be protected by the same strainer. The strainer is to protect the chiller from debris or objects which could block flow through individual heat exchanger tubes. A reduction in flow through tubes could seriously impair the chiller performance or even result in tube freeze up. A thermal-type flow switch is factory installed in the evaporator nozzle and connected to the OptiView panel, which assures adequate chilled fluid flow during operation.

Condenser Fluid – The chiller is engineered for maximum efficiency at both design and part-load operation by taking advantage of the colder cooling tower fluid temperatures which naturally occur during the winter months and off-design conditions. Appreciable power savings are realized from these reduced heads.

The unique design of YORK YD centrifugal chillers in the HVAC industry allows cold condenser fluid starts, without the nuisance trips experienced by most other manufacturers, as detailed below:

 The condenser shell is higher than the evaporator, thus when the chiller is not in operation, gravity moves refrigerant from the condenser into the evaporator. On start-up, the compressor begins pumping refrigerant gas from the evaporator into the condenser and thus builds head pressure.

- The butterfly type liquid expansion valve (variable orifice valve) is controlled by the condenser liquid level at the sub-cooler inlet. As that level increases, the valve would be driven open to allow maximum refrigerant flow.
- 3. YORK YD centrifugal chillers start-up with vanes closed, which reduces the amount of refrigerant gas pumped out of the evaporator over time.
- 4. The control system is set to stop the vanes from further opening if the evaporator fluid temperature achieves 1°F (0.6°C) above the trip set-point for low water temperature cut-out, typically 4°F (2.2°C) below set point.

At initial start-up, entering condenser water temperature may be 25° F (13.9° C) colder than standby chilled water temperature, but the minimum temperature should be above the freezing point of the chilled liquid.

Handling cold condenser fluid at the onset of changeover from free cooling with tower/heat exchangers is often a realistic requirement. The chiller will start and continue to operate because pressure differential increases quickly, thus preventing nuisance trips on low evaporator pressure usually caused by: system depression, refrigerant stack-up in the condenser, and starvation of the evaporator.

For continuous operation, the minimum entering condenser fluid temperature for both full and part load conditions is provided by the following equation:

English

Min. ECWT = LCHWT - C RANGE +
$$5^{\circ}F$$
 + 12 $\left(\frac{\%Load}{100}\right)$

SI

Min. ECWT = LCHWT - C RANGE + 2.8°C + 6.6
$$\left(\frac{\text{%Load}}{100}\right)$$

where:

ECFT = entering condensing fluid temperature

LCHFT = leaving chilled fluid temperature

COND.RANGE = leaving condenser fluid temperature - entering condenser

Fluid temperature at given load condition.

Examples:

- a. 2000 TR (7032 kW) chiller
- b. 44°F (6.7°C) leaving chilled fluid temperature
- c. 85/94.3°F (29.4/34.6°C) condenser fluid temperature range @ full load

English Example

At full load:

Min. ECFT = 44 -
$$(94.3 - 85) + 5 + 12 \frac{100}{100} = 44 - 9.3 + 5 + 12 =$$
Min. ECFT = 51.7 °F

At 20% load:

Min. ECFT = 44 - (87 - 85) + 5 + 12
$$\frac{20}{100}$$
 = 44 - 2 + 5 + 2.4 = Min. ECFT = 49.4 °F

SI Example

At full load:

Min. ECFT =
$$6.7 - (34.6 - 29.4) + 2.8 + 6.6 - \frac{100}{100} = 6.7 - 5.2 + 2.8 + 6.6 =$$
Min. ECFT = 10.9 °C

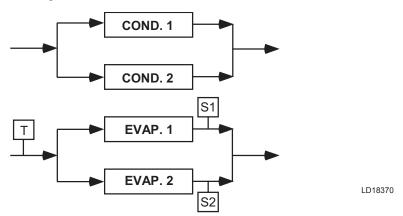
At 20% load:

Min. ECFT =
$$6.7 - (30.6 - 29.4) + 2.8 + 6.6 \frac{20}{100} = 6.7 - 1.2 + 2.8 + 1.3 =$$
Min. ECFT = $9.6 \, ^{\circ}$ C

BRINE APPLICATIONS

Various types of brine can be used in both the evaporator and condenser in lieu of water. The OptiView panel is programmed in the factory to allow extending the evaporator leaving brine temperature setpoint below 36°F (2.2°C). The low evaporator pressure cutout is factory programmed to the appropriate value depending on the percentage concentration and type of brine solution.

When the chiller is not running, brine should not be flowing through the evaporator. However, if there is brine flowing through the evaporator, there must be flow through the condenser to prevent tubes from freezing. In brine applications, the condenser pump control will close when the condenser saturation temperature reaches 35°F (1.7°C) and the pump will shut off when the temperature increases to 40°F (4.4°C). This is applicable if tied to the condenser pump control.


MULTIPLE UNITS

Selection – Many applications require multiple units to meet the total capacity requirements as well as to provide flexibility and some degree of protection against equipment shutdown. There are several common unit arrangements for this type of application. The YD chiller has been designed to be readily adapted to the requirements of these various arrangements.

LD18371

Application Data (Cont'd)

Parallel Arrangement (Refer to Fig. 2) — Chillers may be applied in multiples with chilled and condenser water circuits connected in parallel between the units. Fig. 2 represents a parallel arrangement with two chillers. Parallel chiller arrangements may consist of equally or unequally sized units. When multiple units are in operation, they will load and unload at equal percentages of design full load for the chiller.

S - Temperature Sensor for Chiller Capacity Control

T - Thermostat for Chiller Capacity Control

FIGURE 2 - PARALLEL EVAPORATORS PARALLEL CONDENSERS

Depending on the number of units and operating characteristics of the units, loading and unloading schemes should be designed to optimize the overall efficiency of the chiller plant. It is recommended to use an evaporator bypass piping arrangement to bypass fluid around evaporator of any unit which has cycled off at reduced load conditions. It is also recommended to alternate the chiller cycling order to equalize chiller starts and run hours.

Series Arrangement (Refer to Fig. 3) – Chillers may be applied in pairs with chilled water circuits connected in series and condenser water circuits connected in parallel. All of the chilled water flows through both evaporators with each unit handling approximately one-half of the total load. When the load decreases to a customer selected load value, one of the units will be shut down by a sequence control. Since all water is flowing through the operating unit, that unit will cool the water to the desired temperature.

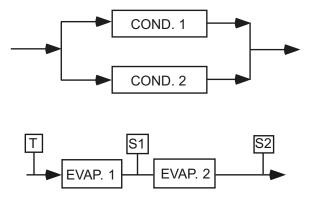


FIGURE 3 - SERIES EVAPORATORS PARALLEL CONDENSERS

Series Counterflow Arrangement (Refer to Fig. 4) – Chillers may be applied in pairs with chilled water circuits connected in series and with the condenser water in series counterflow. All of the chilled water flows through both evaporators. All of the condenser water flows through both condensers. The water ranges are split, which allows a lower temperature difference or "head" on each chiller, than multiple units in parallel. For equal chillers, the machine at higher temperature level will typically provide slightly more than half the capacity. The compressor motors and gear codes on the two chillers are often matched, such that the high temperature machine can operate at the low temperature conditions when one unit is cycled off at part loads (as compared to series parallel chillers which are typically not identical).

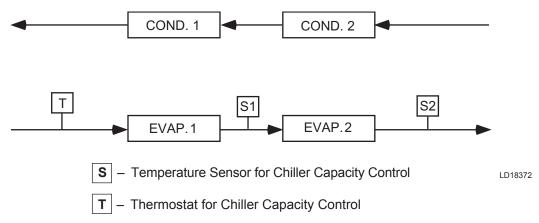


FIGURE 4 - SERIES EVAPORATORS SERIES-COUNTER FLOW CONDENSERS

Series counter flow application can provide a significant building energy savings for large capacity plants which have chilled and condenser water temperature ranges greater than typical AHRI.

REFRIGERANT RELIEF PIPING

Each chiller is equipped with dual relief valves on the condenser and a single relief valve on the evaporator. The dual relief valves on the condenser are redundant and allow changing of either valve while the unit is fully charged. The purpose of the relief valves is to quickly relieve excess pressure of the refrigerant charge to the atmosphere, as a safety precaution in the event of an emergency such as fire. They are set to relieve at an internal pressure as noted on the pressure vessel data plate, and are provided in accordance with ASHRAE 15 safety code and ASME or applicable pressure vessel code.

Sized to the requirements of applicable codes, a vent line must run from the relief device to the outside of the building. This refrigerant relief piping must include a cleanable, vertical-leg dirt trap to catch vent-stack condensation. Vent piping must be arranged to avoid imposing a strain on the relief connection and should include at least one flexible connection.

SOUND AND VIBRATION CONSIDERATIONS

A YD chiller is not a source of objectionable sound and vibration in normal air conditioning applications. Neoprene isolation mounts are furnished as standard with each unit. Optional level-adjusting spring isolator assemblies designed for 1" (25 mm) static deflection are available from Johnson Controls.

YD chiller sound pressure level ratings will be furnished on request.

Control of sound and vibration transmission must be taken into account in the equipment room construction as well as in the selection and installation of the equipment.

THERMAL INSULATION

No appreciable operating economy can be achieved by thermally insulating the chiller. However, the chiller's cold surfaces should be insulated with a vapor barrier insulation sufficient to prevent condensation. A chiller can be factory insulated with 3/4" (19 mm) or 1-1/2" (38 mm) thick insulation, as an option. This insulation will normally prevent condensation in environments with dry bulb temperatures of 50°F to 90°F (10°C to 32°C) and relative humidities up to 75% [3/4" (19 mm) thickness] or 90% [1-1/2" (38 mm) thickness]. The insulation is painted and the surface is flexible and reasonably resistant to wear. It is intended for a chiller installed indoors and, therefore, no protective covering of the insulation is usually required. If insulation is applied to the water boxes at the job site, it must be removable to permit access to the tubes for routine maintenance.

VENTILATION

The ASHRAE Standard 15 Safety Code for Mechanical Refrigeration requires that all machinery rooms be vented to the outdoors utilizing mechanical ventilation by one or more power-driven fans. This standard, plus National Fire Protection Association Standard 90A, state, local and any other related codes should be reviewed for specific requirements. Since the YD chiller motors are air-cooled, ventilation should allow for the removal of heat from the motors.

In addition, the ASHRAE Standard 15 requires a refrigerant vapor detector to be employed for all refrigerants. It is to be located in an area where refrigerant from a leak would be likely to concentrate. An alarm is to be activated and the mechanical ventilation started at a value no greater than the TLV (Threshold Limit Value) of the refrigerant.

 $\textbf{TABLE 7 -} \textbf{ WATER FLOW RATE LIMITS GPM (L/S) BASED ON CONSTANT FLOW APPLICATION AND STANDARD TUBES \\$

	LENGTH	EL OW/	CHELL		Е	VAPO	RATOR	₹		SHELL	CO	NDENS	ER FL	OW RA	ATE (G	PM)
COMP				1 P/	ASS	2 P	ASS	3 P/	ASS	_	1 P	ASS	2 P	ASS	3 P/	ASS
	(FT)	PD	CODE	MIN	MAX	MIN	MAX	MIN	MAX	CODE	MIN	MAX	MIN	MAX	MIN	MAX
		GPM		3851	15405	1923	5094	1282	3357		4983	17956	2492	6790	1660	4556
		(L/S)	ВВ	(243)	(972)	(121)	(321)	(81)	(212)	LB	(314)	(1133)	(157)	(428)	(105)	(287)
		Ft	ВВ	4	52	8	45	12	67	LD	4	38	8	45	11	67
		(kPa)		(13)	(157)	(24)	(134)	(36)	(201)		(13)	(114)	(23)	(134)	(33)	(201)
		GPM		4704	18816	2352	6162	1568	4069		5466	19695	2730	7398	1820	4981
		(L/S)	ВС	(297)	(1187)	(148)	(389)	(99)	(257)	LC	(345)	(1243)	(172)	(467)	(115)	(314)
		Ft	ВС	5	57	8	45	12	67	LC	4	39	8	45	11	68
		(kPa)		(14)	(170)	(24)	(134)	(36)	(201)		(13)	(118)	(23)	(134)	(33)	(202)
		GPM		5522	22088	2761	7151	1841	4731		5828	21002	2914	7836		
		(L/S)	BD	(348)	(1394)	(174)	(451)	(116)	(298)	LD	(368)	(1325)	(184)	(494)		
		Ft	В	5	63	8	45	12	67		4	41	8	45		
K1	18	(kPa)		(15)	(187)	(24)	(134)	(36)	(201)		(13)	(121)	(23)	(134)		
	10	GPM		3957	15828	1979	6786	1319	4478		4303	17087	2152	8201	1434	5561
		(L/S)	B2	(250)	(999)	(125)	(428)	(83)	(283)	L2	(271)	(1078)	(136)	(517)	(90)	(351)
		Ft	D2	3	37	5	45	7	67	LZ	3	26	5	45	7	64
		(kPa)		(9)	(109)	(14)	(134)	(22)	(201)		(8)	(78)	(14)	(134)	(19)	(192)
		GPM		4706	18825	2353	7953	1569	5255		5072	19857	2536	9370	1691	6396
		(L/S)	В3	(297)	(1188)	(148)	(502)	(99)	(332)	L3	(320)	(1253)	(160)	(591)	(107)	(403)
		Ft	_ D3	3	41	5	45	7	68	LJ	3	28	5	45	7	66
		(kPa)		(9)	(122)	(15)	(134)	(22)	(202)		(9)	(84)	(14)	(134)	(20)	(196)
		GPM		5359	21435	2679	8922	1786	5912		5989	23163	2995	10684		
		(L/S)	B4	(338)	(1352)	(169)	(563)	(113)	(373)	L4	(378)	(1461)	(189)	(674)		
		Ft	54	3	45	5	45	8	68	4	3	31	5	45		
		(kPa)		(10)	(134)	(15)	(134)	(22)	(202)		(9)	(92)	(15)	(134)		

TABLE 7 - WATER FLOW RATE LIMITS GPM (L/S) BASED ON CONSTANT FLOW APPLICATION AND STANDARD TUBES (CONT'D)

	LENGTH	EL OW/	SHELL		Е	VAPO	RATO	₹		SHELL	CO	NDENS	ER FL	OW RA	ATE (G	PM)
COMP		PD	CODE	1 P/	ASS	2 P	ASS	3 P/	ASS	CODE	1 P	ASS	2 P	ASS	3 P/	ASS
	(FT)	טץ	CODE	MIN	MAX	MIN	MAX	MIN	MAX	CODE	MIN	MAX	MIN	MAX	MIN	MAX
		GPM		3851	15406	1926	4574	1284	3011		4980	17956	2490	6116	1660	4093
		(L/S)	MD	(243)	(972)	(121)	(289)	(81)	(190)	MD	(314)	(1133)	(157)	(386)	(105)	(258)
		Ft	MB	5	62	10	45	15	67	MB	5	52	9	45	13	67
		(kPa)		(16)	(185)	(29)	(134)	(43)	(201)		(16)	(156)	(26)	(134)	(40)	(201)
		GPM		4704	18817	2352	5551	1568	3654		5460	19695	2730	6672	1820	4472
		(L/S)	MC	(297)	(1187)	(148)	(350)	(99)	(230)	MC	(344)	(1243)	(172)	(421)	(115)	(282)
		Ft	MC	6	67	10	45	15	67	MC	5	55	9	45	13	67
		(kPa)		(16)	(199)	(29)	(134)	(44)	(201)		(16)	(164)	(26)	(134)	(40)	(201)
		GPM		5522	22088	2761	6447	1841	4261		5820	21002	2914	7075		
		(L/S)	MD	(348)	(1394)	(174)	(407)	(116)	(269)	MD	(367)	(1325)	(184)	(446)		
		Ft	טואו	6	72	10	45	15	67	INID	6	57	9	45		
	22	(kPa)		(17)	(215)	(29)	(134)	(44)	(201)		(18)	(170)	(27)	(134)		
		GPM		3957	15828	1979	6133	1319	4043		4303	17087	2152	7433	1434	5005
		(L/S)	M2	(250)	(999)	(125)	(387)	(83)	(255)	M2	(271)	(1078)	(136)	(469)	(90)	(316)
		Ft	IVIZ	3	42	6	45	9	68	IVIZ	4	37	6	45	8	68
		(kPa)		(10)	(126)	(17)	(134)	(26)	(202)		(11)	(109)	(16)	(134)	(24)	(202)
		GPM		4706	18825	2353	7200	1569	4753		5072	19557	2536	8514	1691	5775
K2		(L/S)	М3	(297)	(1188)	(148)	(454)	(99)	(300)	М3	(320)	(1234)	(160)	(537)	(107)	(364)
1\2		Ft	IVIS	4	46	6	45	9	67	IVIS	4	41	6	45	8	67
		(kPa)		(11)	(139)	(18)	(134)	(27)	(201)		(12)	(123)	(16)	(134)	(24)	(201)
		GPM		5359	21435		8105	1786	5359		5989	23163	3995	9728		
		(L/S)	M4	(338)	(1352)	(169)	(511)	(113)	(338)	M4	(378)	(1461)	(252)	(614)		
		Ft	141-4	4	51	6	45	9	68	IVI	4	47	10	45		
		(kPa)		(12)	(151)	(18)	(134)	(27)	(202)		(13)	(140)	(30)	(134)		
		GPM		4872	19489		6370	1624	4206		6213	22389	3107	8312	2070	5634
		(L/S)	NB		(1230)	(154)	(402)	(102)	(265)	ВВ	(392)	(1412)	(196)	(524)	(131)	(355)
		Ft	IND	5	58	8	45	12	67		4	42	8	45	11	68
		(kPa)		(14)	(174)	(24)	(134)	(36)	(201)		(13)	(124)	(23)	(134)	(34)	(202)
		GPM		5386	21543		6988	1795	4623		6740	24286	3370	8925	2245	6082
	18	(L/S)	NC ((340)	(1359)	(170)	(441)	(113)	(292)	вс	(425)	(1532)	(213)	(563)	(142)	(384)
	10	Ft		5	62	8	45	12	67		5	43	8	45	11	67
		(kPa)		(15)	(184)	(24)	(134)	(36)	(201)		(14)	(129)	(24)	(134)	(34)	(201)
		GPM		5864	23457	2932	7565	1955	4994		7115	25639	3557	9358	2370	6399
		(L/S)	ND	,	(1480)	. ,	(477)	(123)	(315)	BD	(449)	(1618)	(224)	(590)	(150)	(404)
		Ft	110	5	65	8	45	12	68		5	45	8	45	12	68
		(kPa)		(15)	(194)	(24)	(134)	(37)	(202)		(14)	(133)	(24)	(134)	(34)	(202)

TABLE 7 - WATER FLOW RATE LIMITS GPM (L/S) BASED ON CONSTANT FLOW APPLICATION AND STANDARD TUBES (CONT'D)

	LENGTH	EL OW!	SHELL		Е	VAPO	RATOR	₹		SHELL	CO	NDENS	ER FL	OW RA	ATE (G	PM)
COMP		PD	CODE	1 P/	ASS	2 P	ASS	3 P/	ASS	CODE	1 P	ASS	2 P	ASS	3 P/	ASS
	(FT)	PD	CODE	MIN	MAX	MIN	MAX	MIN	MAX	CODE	MIN	MAX	MIN	MAX	MIN	MAX
											7449	26544	3725	9731		
										BE	(470)	(1675)	(235)	(614)		
										PE	5	46	8	45		
											(14)	(137)	(24)	(134)		
		GPM		4875	19501	2438	8215	1625	5428		5772	22381	2886	10379	1924	7143
		(L/S)	N2	(308)	(1230)	(154)	(518)	(103)	(342)	B2	(364)	(1412)	(182)	(655)	(121)	(451)
		Ft	INZ	3	42	5	45	7	67	DZ	3	30	5	45	7	67
		(kPa)		(10)	(125)	(15)	(134)	(22)	(201)		(9)	(90)	(15)	(134)	(20)	(199)
		GPM		5763	23054	2882	9810	1921	6311		6380	24570	3190	11210	2127	7770
K2	18	(L/S)	N3	(364)	(1454)	(182)	(619)	(121)	(398)	В3	(403)	(1550)	(201)	(707)	(134)	(490)
N2	10	Ft	INO	4	48	5	45	8	67	В	3	32	5	45	7	67
		(kPa)		(11)	(142)	(15)	(134)	(23)	(201)		(10)	(96)	(15)	(134)	(21)	(201)
		GPM		6422	25688	3211	10420	2141	6925		6981	26737	3491	11981	2327	8377
		(L/S)	N4	(405)	(1621)	(203)	(657)	(135)	(437)	B4	(440)	(1687)	(220)	(756)	(147)	(529)
		Ft	1114	4	53	5	45	8	68	D4	3	34	5	45	7	67
		(kPa)		(12)	(157)	(16)	(134)	(23)	(202)		(10)	(102)	(16)	(134)	(21)	(201)
											7713	29372	3856	12869		
										B5	(487)	(1853)	(243)	(812)		
										53	4	37	5	45		
											(10)	(111)	(16)	(134)		

 $\textbf{TABLE 7} \cdot \text{WATER FLOW RATE LIMITS GPM (L/S) BASED ON CONSTANT FLOW APPLICATION AND STANDARD TUBES \ (CONT'D) \\$

	<u> </u>	EL OW!	, I		E	VAPO	RATOR	₹		CHELL	CO	NDENS	ER FL	OW RA	ATE (G	PM)
COMP	LENGTH	PD PD	CODE		ASS	2 P	ASS	3 P/	ASS	SHELL	1 P	ASS	2 P	ASS	3 P/	ASS
	(FT)	PD	CODE	MIN	MAX	MIN	MAX	MIN	MAX	CODE	MIN	MAX	MIN	MAX	MIN	MAX
		GPM		6353	25410	3176	7464	2118	4934		6241	22491	3121	7661	2080	5079
		(L/S)	ED	(401)	(1603)	(200)	(471)	(134)	(311)	CD	(394)	(1419)	(197)	(483)	(131)	(320)
		Ft	EB	5	65	10	45	15	68	СВ	5	49	9	45	14	67
		(kPa)		(16)	(193)	(29)	(134)	(44)	(202)		(16)	(145)	(27)	(134)	(40)	(201)
		GPM		7159	28631	3579	8339	2386	5523		6967	25105	3483	8488	2322	5638
		(L/S)	F0	(452)	(1806)	(226)	(526)	(151)	(348)	СС	(440)	(1584)	(220)	(536)	(146)	(356)
		Ft	EC	6	68	10	45	15	68		5	51	9	45	14	67
		(kPa)		(17)	(203)	(30)	(134)	(44)	(202)		(16)	(152)	(27)	(134)	(41)	(201)
		GPM		7938	31750	3969	9168	2646	6085		7900	28469	3950	9519		
		(L/S)	ED	(501)	(2003)	(250)	(578)	(167)	(384)	CD	(498)	(1796)	(249)	(601)		
		Ft		6	71	10	45	15	68	CD	6	55	9	45		
	22	(kPa)		(17)	(213)	(30)	(134)	(45)	(202)		(17)	(163)	(28)	(134)		
		GPM		6428	25712	3214	9754	2143	6483		4969	19879	2484	8697	2030	5782
		(L/S)	E2	(406)	(1622)	(203)	(615)	(135)	(409)	C2	(313)	(1254)	(157)	(549)	(128)	(365)
		Ft	LZ	4	45	6	45	9	68	02	3	33	5	45	12	68
		(kPa)		(10)	(134)	(18)	(134)	(27)	(202)		(10)	(97)	(16)	(134)	(35)	(202)
		GPM		7117	28467	3558	10693	2372	7117		6487	25352	3244	10838	2162	7246
		(L/S)	E3	(449)	(1796)	(224)	(675)	(150)	(449)	СЗ	(409)	(1599)	(205)	(684)	(136)	(457)
		Ft	LJ	4	48	6	45	9	67	03	4	37	6	45	8	68
		(kPa)		(11)	(142)	(18)	(134)	(27)	(201)		(11)	(111)	(16)	(134)	(25)	(202)
		GPM		7842	31367	3921	11645	2614	7776		8099	31159	4049	12951		
		(L/S)	E4	(495)	(1979)	(247)	(735)	(165)	(491)	C4	(511)	(1966)	(255)	(817)		
		Ft		4	51	6	45	9	68	04	4	44	6	45		
		(kPa)		(12)	(151)	(19)	(134)	(27)	(202)		(12)	(130)	(17)	(134)		
		GPM		7995	31978	3997	10213	2665	6915		7569	27275	3780	10143	2520	6876
		(L/S)	FB	(504)	(2018)	(252)	(644)	(168)	(436)	DB	(478)	(1721)	(238)	(640)	(159)	(434)
		Ft	''	5	62	8	45	12	67		5	46	8	45	11	68
К3		(kPa)		(15)	(186)	(25)	(134)	(36)	(201)		(14)	(138)	(22)	(134)	(32)	(202)
110		GPM		8946	35782		11294	2982	7678		8440	30412	1	11176	2810	7628
	18	(L/S)	FC		(2257)	(282)	(713)	(188)	(484)	DC	(532)	(1919)		(705)	(177)	(481)
		Ft		5	67	9	45	12	68		5	50	8	45	11	67
		(kPa)		(16)	(200)	(25)	(134)	(36)	(202)		(15)	(148)	(23)	(134)	(33)	(201)
		GPM		9009	39637	4955	12337	3303	8456		9326	33606	l	12182	I	8359
		(L/S)	FD		(2501)		(778)	(208)	(533)	DD	(588)	(2120)		(769)	(196)	(527)
		Ft		6	72	9	45	12	68		5	54	8	45	11	68
		(kPa)		(17)	(216)	(26)	(134)	(37)	(202)		(16)	(160)	(23)	(134)	(33)	(202)
												35003		12601		
										DE		(2208)				
											5	56	8	45		
		GPM		8047	32188	4024	13056	2602	8986		(16) 7206	(166) 27943	(24) 3603	(134) 12958	2402	8930
		(L/S)			(2031)		(824)	(169)	(567)		(455)	(1763)		(818)	(152)	(563)
		Ft	F2	3	46	5	45	7	68	D2	3	36	5	45	7	67
		(kPa)		(10)	(137)	(16)	(134)	(22)	(202)		(10)	(106)	(14)	(134)	(20)	(201)
		GPM		8941	35765		14216		9880		7944	30601		13962		9703
		(L/S)			(2256)		(897)	(188)	(623)		(501)	(1931)	I	(881)	(167)	(612)
	18	Ft	F3	4	50	5	45	8	67	D3	4	39	5	45	7	67
		(kPa)		(11)	(151)	(16)	(134)	(22)	(201)		(11)	(115)	(15)	(134)	(21)	(201)
		GPM		9920	39800		15425		10829		8756	33527	4378	15003		10533
		(L/S)			(2510)		(973)	(209)	(683)		(552)	(2115)	1	(947)	(184)	(665)
		Ft	F4	4	56	6	45	8	68	D4	4	42	5	45	7	67
		(kPa)		(12)	(167)	(17)	(134)	(23)	(202)		(12)	(126)	(16)	(134)	(21)	(201)
		(α)		· · - /	()		()	(_0)	___			37681		16391	(= 1)	(===1)
											i	(2377)	I	(1034)		
										D5	4	48	5	45		
											(13)	(142)	(16)	(134)		
											(.0)	/	, ,	(/		

 $\begin{tabular}{ll} \textbf{TABLE 7} - \textbf{WATER FLOW RATE LIMITS GPM (L/S) BASED ON CONSTANT FLOW APPLICATION AND STANDARD TUBES (CONT'D) \\ \end{tabular}$

COMP	LENGTH (FT)	PD	CODE	4 D												PM)
	(1 1)		CODE		ASS		ASS		ASS	SHELL		ASS		ASS		ASS
			OODL	MIN	MAX	MIN	MAX	MIN	MAX	OODL	MIN	MAX	MIN	MAX	MIN	MAX
		GPM		!	31978		9234	2665	6209			27775	3850	9322	2565	6307
	-	(L/S)	GB		(2018)	. ,	(583)	(168)	(392)	EB		(1752)	·	(588)	(162)	(398)
		Ft		6	72	10	45	15	67		6	54	9	45	14	67
		(kPa)		(17)	(214)	(30)	(134)	(44)	(201)		(17)	(162)	(28)	(134)	(42)	(201)
		GPM		8946	35872		10220	2982	6918		8578	30912	1	10259	2855	6981
	-	(L/S)	GC		(2263)		(645)	(188)	(436)	EC		(1950)		(647)	(180)	(440)
		Ft (kDa)		(10)	76	(22)	45	15	67		6	58	9	45	14	68
	-	(kPa)		(18)	(228)	(32)	(134)	(44)	(201)		(17)	(173) 34106	(27)	(134)	(41)	(202)
		GPM		9909 (625)	39637 (2501)	4955	(706)	3303	7614		9465	(2152)	1	11191	3150 (199)	7660
	-	(L/S) Ft	GD	6	82	(313)	45	(208) 15	(480) 68	ED	(597) 6	62	(299) 10	(706) 45	14	(483)
		rι (kPa)		(19)	(244)	(31)	(134)	(45)	(202)		(19)	(185)	(29)	(134)	(41)	(201)
	-	(KFa)		(19)	(244)	(31)	(134)	(43)	(202)		9853	35503	4926	11583	(41)	(201)
												(2240)	l	(731)		
										EE	6	64	10	45		
											(19)	(190)	(29)	(134)		
	22	GPM		8047	32188	4024	11910	2682	8128			28926	3673	12149	2448	8352
		(L/S)		(508)	(2031)		(751)	(169)	(513)		(463)	(1825)	(232)	(766)	(154)	(527)
		Ft	G2	4	52	6	45	9	68	E2	4	41	6	45	8	68
		(kPa)		(12)	(154)	(19)	(134)	(27)	(202)		(11)	(123)	(17)	(134)	(25)	(202)
		GPM		8941	35765		13009		8956			31584		13087	2694	9054
		(L/S)	-	(564)	(2256)		(821)	(188)	(565)			(1993)	1	(826)	(170)	(571)
		Ft	G3	4	56	6	45	9	67	E3	4	44	6	45	8	67
		(kPa)		(13)	(168)	(19)	(134)	(27)	(201)		(13)	(133)	(18)	(134)	(25)	(201)
		GPM		9920	39680	4960	14161	3307	9837		8895	34510	4447	14063	2965	9806
		(L/S)	G4	(626)	(2503)	(313)	(893)	(209)	(621)	E4	(561)	(2177)	(281)	(887)	(187)	(619)
K4		Ft	G4	5	62	7	45	9	67		5	48	6	45	9	67
		(kPa)		(14)	(184)	(20)	(134)	(27)	(201)		(14)	(144)	(19)	(134)	(26)	(201)
												38664	5024	15393		
										E5	(634)	(2439)	(317)	(971)		
											5	54	7	45		
-											(15)	(161)	(20)	(134)		
		GPM		9155	36619		11512	3052	7858		9121	32867	4560	12428	3040	8326
	-	(L/S)	НВ		(2310)		(726)	(193)	(496)	FB	(575)	(2074)	(288)	(784)	(192)	(525)
		Ft		5	68	9	45	12	67		5	54	8	45	12	68
	-	(kPa)		(16)	(203) 40271	(25)	(134) 12484	(36)	(201)		(16)	(161) 36390	(23)	(134) 13646	(35)	(202)
		GPM (L/S)			(2541)				8574 (541)					(861)		9158
	-	Ft	HC	6	73	9	45	12	67	FC	6	58	8	45	12	67
		(kPa)		(17)	(219)	(26)	(134)	(37)	(201)		(17)	(174)	(24)	(134)	(35)	(201)
		GPM		\sim	44988		13693		9485			39152		14584	3622	9820
		(L/S)			(2838)		(864)	(237)	(598)			(2470)		(920)	(229)	(620)
	18	Ft	HD	6	81	9	45	13	67	FD	6	62	8	45	12	67
		(kPa)		(18)	(241)	(27)	(134)	(37)	(201)		(18)	(186)	(24)	(134)	(35)	(201)
		()		(10)	(= /)	(= /	()	(0.)	(=0.)			40652	5641	15092	(00)	(=0.)
												(2565)	(356)	(952)		
										FE	6	65	8	45		
	ĺ										(19)	(193)	(24)	(134)		
	Ī	GPM		9002	36006	4501	14290	3001	9947		8721	33884		16116	2907	10899
		(L/S)	шо		(2272)			(189)	(628)	E0		(2138)	i	(1017)	(183)	(688)
	ļ	Ft	H2	4	51	5	45	8	68	F2	4	43	5	45	7	67
		(kPa)		(11)	(151)	(16)	(134)	(22)	(202)		(12)	(129)	(15)	(134)	(21)	(201)

 $\textbf{TABLE 7} \cdot \text{WATER FLOW RATE LIMITS GPM (L/S) BASED ON CONSTANT FLOW APPLICATION AND STANDARD TUBES \ (CONT'D) \\$

	LENGTH	EL OW!	QUE!!				RATOR	₹		SHELL				OW RA		
COMP	1	PD	CODE	1 P/	ASS	2 P	ASS	3 P/	ASS	CODE	1 P/	ASS	2 P	ASS	3 P/	ASS
	(FT)	PD	CODE	MIN	MAX	MIN	MAX	MIN	MAX	CODE	MIN	MAX	MIN	MAX	MIN	MAX
		GPM		10004	40018	5002	15532	3335	10922		9620	37123	4810	16116	3207	11848
		(L/S)	Н3	(631)	(2525)	(316)	(980)	(210)	(689)	F3	(607)	(2342)	(303)	(1017)	(202)	(748)
		Ft	113	4	56	6	45	8	67	13	4	48	5	45	7	68
		(kPa)		(12)	(168)	(17)	(134)	(23)	(201)		(13)	(142)	(15)	(134)	(21)	(202)
		GPM		l	44464		16813		11950			40674		18863	3535	12863
K4	18	(L/S)	H4		(2805)		(1061)	. ,	(754)	F4		(2566)		(1190)		(812)
		Ft		5	63	6	45	8	67		4	53	5	45	7	675
		(kPa)		(13)	(189)	(17)	(134)	(23)	(201)		(13)	(158)	(15)	(134)	(22)	(2016)
											!	44628	!	20361		
										F5		(2816)		(1285)		
											5	59	5	45		
		CDM	T T	0455	20040	4577	10150	2052	7004		(15)	(177)	(16)	(134)	2500	0700
		GPM (L/S)		!	36619 (2310)		10459 (660)	(193)	7064		10767 (679)	(38799 (2448)	!	13070 (825)	(226)	(553)
		Ft	KB	6	78	10	45	15	67	KB	7	(2 44 6) 69	9	45	14	67
		(kPa)		(19)	(231)	(30)	(134)	(44)	(201)		(20)	(206)	(28)	(134)	(42)	(201)
		GPM		10068		5034	11376	3356	7735			43129		14367	3990	9668
		(L/S)		ı	(2541)		(718)	(212)	(488)			(2721)		(906)	(252)	(610)
		Ft	KC	7	83	10	45	15	67	KC	7	76	10	45	14	68
		(kPa)		(19)	(247)	(30)	(134)	(45)	(201)		(22)	(227)	(29)	(134)	(43)	(202)
		GPM			44988		12512		8566		·	45573	· · ·	15096	4216	10178
		(L/S)	KD	(710)	(2838)	(355)	(789)	(237)	(540)	KD	(798)	(2875)	(399)	(952)	(266)	(642)
		Ft	KD	7	90	10	45	15	67	KD	8	80	10	45	14	68
		(kPa)		(21)	(269)	(31)	(134)	(45)	(201)		(23)	(239)	(29)	(134)	(43)	(202)
												47936		15789		
										KE		(3024)		(996)		
										'_	8	84	10	45		
K7	22		1				1.000=				(24)	(251)	(30)	(134)		
		GPM			26006			3001	9017		9944	38642		16423		11126
		(L/S)	K2		(1641)		(826)	(189) 9	(569)	K2	(627)	(2438)		(1036)		(702)
		Ft (kPa)		(13)	57 (169)	6 (19)	45 (134)	(27)	67 (201)		5 (15)	54 (162)	6 (18)	45 (134)	9 (25)	67 (201)
		GPM			40018		14256		9921			42305		17768		12075
		(L/S)		l	(2525)		(899)	(210)	(626)		(692)	(2669)		(1121)		(762)
		Ft	K3	5	62	7	45	9	68	K3	5	60	6	45	9	68
		(kPa)		(14)	(185)	(20)	(134)	(27)	(202)		(16)	(179)	(18)	(134)	(26)	(202)
		GPM			44464		15479	/	10894			46348		19176		13113
		(L/S)	16.4		(2805)		(977)	(234)	(687)			(2924)		(1210)		(827)
		Ft	K4	11	69	7	45	9	67	K4	6	67	6	45	9	68
		(kPa)		(32)	(206)	(20)	(134)	(28)	(201)		(17)	(200)	(18)	(134)	(25)	(202)
												52111	6841	21105		
										K5	(863)	(3288)	(432)	(1331)		
										1.3	7	78	6	45		
											(19)	(232)	(19)	(134)		

Electrical Considerations

ELECTRICAL CONSIDERATIONS

Motor Voltage – Low voltage motors (380 to 575 volts) are furnished with six leads (or multiples of six leads). Medium voltage (2300 volts and above) motors have three leads. Motor circuit conductor size must be in accordance with the National Electrical Code (N.E.C.), or other applicable codes, for the motor full load amperes (FLA). Flexible conduit should be used for the last several feet to the chiller in order to provide vibration isolation. Table 9 lists the allowable variation in voltage supplied to the chiller motor. The unit name plate is stamped with the specific motor voltage, and frequency for the appropriate motor.

Starters – The YD chiller requires two starters, one connected to each of the chiller motors. The two starters may be individually connected to a power source, or the starters may be furnished as a package with the two incoming feeds bussed or cabled together. When used, electro-mechanical starters must be furnished in accordance with YORK Standard Specifications (R-1137). This will ensure that starter components, controls, circuits, and terminal markings will be suitable for required overall system performance.

Oil Pump Power Supply – The YD chiller is provided with an auxiliary variable speed oil pump drive panel. This panel operates the two oil pump motors, powers the 3 phase oil reservoir heater, and includes the control power transformer for the chiller control panel. A common incoming disconnect is provided at the panel. For remote electromechanical starters and medium voltage variable speed drive the components feeds are individually fused and a separate 3 phase power supply (380 to 575 voltages as listed on Table 9) is required. This power can be from a separate source available in the building, or optionally fed from an auxiliary source in one of the drive motor starters. For chillers with unit mounted low voltage speed drives and unit mounted solid state starter, the control panel is supplied from the drive or starter panels, in case a special connection is requested (SQ).

Controls – For remote electromechanical starters and medium voltage variable speed drive a 115 volt, single phase, 60 or 50 Hertz 2 KVA power supply is furnished at the chiller from a separate control transformer, included in the 3 phase variable speed oil pump auxiliary power panel.

Copper Conductors – Only copper conductors should be connected to compressor motors and starters. Aluminum conductors have proven to be unsatisfactory when connected to copper lugs. Aluminum oxide and the difference in thermal conductivity between copper and aluminum cannot guarantee the required tight connection over a long period of time.

TABLE 8 - MOTOR VOLTAGE VARIATIONS

	DATED	NAME DI ATE	OPERATING	G VOLTAGE
FREQ.	RATED VOLTAGE	NAME PLATE VOLTAGE*	MIN.	MAX.
	380	380	342	415
	460	440/460/480	414	508
60Hz	575	575	520	635
0002	2300	2300	2070	2530
	3300	3300	2970	3630
	4000	4000/4160	3600	4576
	380	380/400	342	423
50Hz	415	415	374	440
3002	2300	2300	2070	2530
	3300	3300	2970	3630

^{*}For motor voltage above 4160V/60Hz and 3300V/50Hz contact the Johnson Controls Sales Office for a specific selection.

Power Factor Correction Capacitors – Capacitors can be applied to a constant speed chiller for the purpose of power factor correction. For remote mounted electro mechanical starters, the capacitors should be located on the load-side of the starter. The capacitors must be sized and installed to meet the National Electrical Code and be verified by Johnson Controls.

Ampacity on Load Side of Starter – Electrical power wire size to each chiller motor is based on the minimum ampacity. For remote starters, the National Electrical Code defines the calculation of ampacity, as summarized below. More specific information on actual amperage ratings will be supplied with the submittal drawings.

- · Six-lead type of starting (Star-Delta)
- Minimum circuit ampacity per conductor (1 of 6):
- Ampacity = 0.721 x compressor motor amps.
- Three-lead type of starting
- (Across-the-Line, Autotransformer and Primary Reactor)
- Minimum circuit ampacity per conductor (1 of 3):
- Ampacity = 1.25 x compressor motor amps.

Ampacity on Line-Side of Starter – The YD chiller utilizes two compressor motors and starters. If the starters are connected together to the line side, the individual ampacity requirements should be multiplied by two to obtain the total. The only additional load on the circuit for the chiller would be the control transformer and oil pump motors unless they are supplied by a separate source.

Minimum Circuit Ampacity = 125% of compressor motor amps + FLA of all other loads on the circuit.

Branch Circuit Overcurrent Protection – The branch circuit overcurrent protection device(s) should be a time-delay type, with a minimum rating equal to the next standard fuse/breaker rating above the calculated value. It is calculated taking into account the compressor motor amps and may also include control transformer and oil pump motor. Refer to submittal drawings for the specific calculations for each application.

MOTOR ELECTRICAL DATA

The smallest motor available which equals or exceeds the Input power (kW) from the chiller rating program is selected from Tables 12 through 15. The full load amperes (FLA) listed in the tables are maximum values and correspond to the maximum motor kW listed. When the input power (kW) is less than maximum motor kW, the FLA should be reduced per the following equation:

$$\texttt{FLA} \, = \, \frac{ \texttt{Motor kW} }{ \texttt{Max Motor kw} } \, \, \texttt{Max. Motor FLA}$$

TABLE 9 - AVAILABLE 60 HZ COMPRESSOR/SHELL/MOTOR COMBINATIONS

	LABLE 00 HZ CON			MOTOR	CODES	
COMPRESSOR	EVAPORATOR CODE	CONDENSER CODE	LOW VOLTAGE (NONE/EM)	LOW VOLTAGE (VSD)	MEDIUM VOLTAGE (NONE/EM/ PR/AT)	MEDIUM VOLTAGE (VSD)
K1	BB, BC, BD, B2, B3, B4	LB, LC, LD, L2, L3, L4	EW-FC	EW-FB	CW-DC	CW-DC
K2	MB, MC, MD, M2, M3, M4	MB, MC, MD, M2, M3, M4	EW-FC	EW-FB	CW-DC	CW-DC
INZ.	NB, NC, ND, N2, N3, N4	BB, BC, BD, BE,B2, B3, B4, B5	LVV-1 O	EW-I B	OW-DO	OW-DO
К3	EB, EC, ED, E2, E3, E4	CB, CC, CD, C2, C3, C4	FA-FC	FA-FB	DA-DJ	DA-DJ
N3	FB, FC, FD, F2, F3, F4	DB, DC, DD, DE,D2, D3, D4, D5	r a- ro	TA-FB	DA-D3	DA-D3
K4	GB, GC, GD, G2, G3, G4	EB, EC, ED, EE,E2, E3, E4, E5	FA-FC	FA-FB	DA-DJ	DA-DJ
K4	HB, HC, HD, H2, H3, H4	FB, FC, FD, FE,F2, F3, F4, F5	ra-ru	FA-FB	DA-DJ	DA-DJ
К7	KB, KC, KD, K2, K3, K4	KB, KC, KD, KE,K2, K3, K4, K5	N/A	N/A	DD-DL	DD-DL
	VOLTAGE (V)	1	380 up to 575	380 - 460	2300 up to 13200	2300 up to 13200

The benefit from the FLA correction is the possible use of smaller power wiring and/or starter size.

The locked rotor amperes (LRA) are read directly from Tables 12 through 15 for specific Motor Code and voltage. This is because the LRA is dependent only on motor size and voltage and is independent of input power (kW).

In-rush amperes (IRA) depend on LRA and the type of starter applied. The in-rush can be calculated using a percentage of LRA shown in Table 16

TABLE 10 - AVAILABLE 50HZ COMPRESSOR/SHELL/MOTOR COMBINATIONS

				MOTOR		
COMPRESSOR CODE	EVAPORATOR CODE	CONDENSER CODE	LOW VOLTAGE (NONE/EM)	LOW VOLTAGE (VSD)	MEDIUM VOLTAGE (NONE/EM/ PR/AT)	MEDIUM VOLTAGE (VSD)
K 1	BB, BC, BD, B2, B3, B4	LB, LC, LD, L2, L3, L4	5ES-5FB	5ES-5FB	5CS-5DC	5CS-5DC
K2	MB, MC, MD, M2, M3, M4	MB, MC, MD, M2, M3, M4	5ES-5FB	5ES-5FB	5CS-5DC	5CS-5DC
IX2	NB, NC, ND, N2, N3, N4	BB, BC, BD, BE,B2, B3, B4, B5	3E0-31 B	3E0-31 B	000-000	300-3D0
К3	EB, EC, ED, E2, E3, E4	CB, CC, CD, C2, C3, C4	5FA-5FB	5FA-5FB	5DA-5DH	5DA-5DH
NO.	FB, FC, FD, F2, F3, F4	DB, DC, DD, DE,D2, D3, D4, D5	31 A-31 B	31 A-31 B	ODA-ODII	JDA-JDI1
K4	GB, GC, GD, G2, G3, G4	EB, EC, ED, EE,E2, E3, E4, E5	5FA-5FB	5FA-5FB	5DA-5DJ	5DA-5DJ
N4	HB, HC, HD, H2, H3, H4	FB, FC, FD, FE,F2, F3, F4, F5	SFA-SFB	SFA-SFB	3DA-3D3	5DA-5D3
K 7	KB, KC, KD, K2, K3, K4	KB, KC, KD, KE,K2, K3, K4, K5	N/A	N/A	5DD-5DL	5DD-5DL
	VOLTAGE (V)		380 up to 415	380 up to 415	2300 up to 11000	3300 up to 11000

TABLE 11 - 60 HZ ELECTRICAL DATA*

MOTOR CODE	CW	CX	CY	CZ	CA	СВ	DA	DB	DC	DD	DE	DF	DH	DJ**	DK	DL
kW (MAX.)	514	542	578	617	660	703	781	859	937	1015	1093	1171	1359	1554	1748	1942
SHAFT HP	655	690	740	790	845	900	1000	1100	1200	1300	1400	1500	1750	2000	2250	2500
FL EFF%	95	95	95.5	95.5	95.5	95.5	95.5	95.5	95.5	95.5	95.5	95.5	96	96	96	96
F.L. Power	0.87	0.87	0.88	0.88	0.89	0.89	0.87	0.87	0.87	0.88	0.88	0.88	0.87	0.89	0.89	0.89
Factor	0.67	0.67	0.00	0.00	0.69	0.69	0.67	0.67	0.67	0.00	0.00	0.00	0.67	0.69	0.69	0.09

VOLTS								AMPE	RES (M	IAX.)							
200	FLA	879	942	997	1065	1126	1200	1364	1500	1636	_	_	_	_	_	_	
380	LRA	5780	6782	5780	6644	7106	7513	7794	8491	9431	_	_	_	_	_	_	_
440	FLA	579	813	861	920	973	1036	1178	1295	1413	_	_	_	_	_		_
440	LRA	4783	5357	4783	5249	5529	5529	6160	6709	7455	_	_	_	_	_		_
460	FLA	726	778	824	880	931	991	1127	1239	1352	_	_	_	_	_		
400	LRA	5000	5600	5000	5488	5780	5780	6440	7014	7794							
480	FLA	696	746	790	843	892	950	1080	1187	1296							
400	LRA	5217	5843	5217	5727	6031	6031	6720	7319	8133	_	_	_	_	_		_
575	FLA	581	622	659	704	744	793	901	991	1081			_			_	
3/3	LRA	4039	4440	4300	4200	4694	4963	5148	5610	6232							
2300	FLA	146	154	165	176	186	198	225	248	267	290	312	334	389	438	493	548
2300	LRA	935	960	1008	1100	1172	1230	1350	1592	1592	1882	2031	2171	2390	2879	3199	3356
3300	FLA	102	108	115	123	130	138	157	173	186	202	217	233	271	306	344	382
3300	LRA	652	682	719	744	819	858	942	1110	1110	1311	1514	1416	1661	2011	2388	2479
4000	FLA	84	89	95	101	107	114	130	143	154	166	179	192	224	252	283	315
4000	LRA	538	540	554	631	674	713	780	923	923	1077	1177	1246	1428	1669	1842	2047
4160	FLA	81	85	91	97	103	110	125	137	149	160	172	185	215	242	273	303
4100	LRA	560	562	576	656	701	742	811	960	960	1120	1296	1224	1485	1736	1772	1968

^{*} High voltage and special motor designs may not meet efficiency, power factor or amperes values shown for standard motors.

^{**}Min. reduced voltage tap 80%

TΔRIF 12 -	60 HZ ELECTRICAL	DATA - PREMIUM EFFICIENCY
IADLL 14 -		

MOTO	OR CODE	EW	EX	EY	EZ	EA	EB	FA	FB	FC
SHAFT	HP (MAX)	655	690	740	790	845	900	1000	1100	1200
INPUT	KW (MAX)	508	535	574	612	655	698	775	853	930
F.L. I	EFF %	96.2	96.2	96.2	96.2	96.2	96.2	96.2	96.2	96.2
	POWER CTOR	0.87	0.87	0.88	0.87	0.88	0.88	0.87	0.87	0.87
VOLTS			,		AMPERE:	S (MAX.)				
380	FLA	887	934	990	1069	1131	1204	1354	1489	1624
300	LRA	5780	5859	6244	6644	7106	7513	7794	8491	9431
440	FLA	766	807	855	924	977	1040	1169	1286	1403
440	LRA	4668	4744	5050	5098	5529	5782	6160	6709	7455
460	FLA	732	772	818	883	934	995	1118	1230	1342
460	LRA	4880	4960	5280	5330	5780	6045	6440	7014	7794
480	FLA	702	739	784	847	895	954	1072	1179	1286
400	LRA	5092	5175	5510	5562	6031	6308	6720	7319	8133
575	FLA	586	617	654	707	747	796	895	984	1074
5/5	LRA	4039	4100	4200	4200	4694	4963	5148	5610	6232

Note: These motors are designed to meet or exceed NEMA Premium and European IE2 efficiency requirements.

TABLE 13 - 50 HZ ELECTRICAL DATA*

MOTOR CODE	5CS	5CT	5CU	5CV	5CW	5CX	5DA	5DB	5DC	5DD	5DE	5DF	5DG	5DH	5DJ**	5DK	5DL
kW (MAX)	518	554	591	630	669	709	785	863	942	1015	1093	1171	1288	1360	1554	1748	1942
SHAFT HP	658	704	750	800	850	900	1000	1100	1200	1300	1400	1500	1650	1750	2000	2250	2500
FL EFF. % FL	94.7	94.7	94.7	94.7	94.7	94.7	95	95	95	95.5	95.5	95.5	95.5	96	96	96	96
PF	0.88	0.88	0.89	0.89	0.89	0.89	0.88	0.87	0.88	0.88	0.88	0.88	0.88	0.89	0.89	0.89	0.89

VOLTS								Al	IPERE	S (MA	X.)							
380	FLA	895	957	1008	1075	1143	1210	1355	1508	_	_	_	_	<u> </u>	_	l —	l —	_
300	LRA	5491	5491	6313	6694	7113	7404	7794	8511	_	_	_	_	_	_	_	_	_
400	FLA	850	909	958	1021	1086	1150	1287	1433	_	_	_	_	_	_	_	_	_
400	LRA	5780	5780	6645	7046	7487	7794	8204	8959	_	_	_	_	_	_	_	_	_
415	FLA	819	876	923	985	1046	1108	1241	1381	_	_	_	_	_	_	_	_	_
415	LRA	5108	5512	5780	6131	6513	6938	7138	7794	_	_	_	_	_	_	_	_	_
3300	FLA	103	110	116	124	132	139	156	174	187	202	217	233	256	267	306	344	382
3300	LRA	644	693	725	744	819	875	871	1135	1135	1135	1415	1415	1415	1667	1836	2233	2481

^{*} High voltage and special motor designs may not meet efficiency, power factor or amperes values shown for standard motors.

TABLE 14 - 50 HZ ELECTRICAL DATA - PREMIUM EFFICIENCY

MOTO	R CODE	5ES	5ET	5EU	5EV	5EW	5EX	5FA	5FB		
SHAFT	HP (MAX)	658	704	750	800	850	900	1000	1100		
INPUT	KW (MAX)	512	548	584	623	662	701	778	856		
F.L. E	EFF %	95.8	95.8	95.8	95.8	95.8	95.8	95.8	95.8		
F.L. POW	ER FACTOR	0.87	0.88	0.88	0.87	0.87	0.87	0.87	0.87		
VOLTS				AN	IPERES (MA	X.)					
380	FLA	894	946	1008	1087	1155	1223	1359	1495		
300	LRA	5491	5491	6313	6694	7113	7404	7794	7975		
400	FLA	850	899	958	1033	1098	1162	1291	1421		
400	LRA	5780	5780	6645	7046	7487	7794	8204	8395		
415	FLA	819	866	923	996	1058	1120	1245	1369		
415	LRA	5108	5512	5780	6131	6513	6938	7138	7302		

Note: These motors are designed to meet or exceed NEMA Premium and European IE2 efficiency requirements.

^{**}Min. reduced voltage tap 80%

TABLE 15 - MOTOR STARTERS

TYPE	SOLID STATE	STAR-	AUTO)	ACROSS-	DDIMADV	REACTOR	VARIABL	E SPEED
STARTER	SOLID STATE	DELTA	TRANSFORMER		THE-LINE	PRIMARI	REACTOR	DRIVE	
VOLTAGE	MEDIUM	LOW	MEDIU	М	HIGH	MED	NUM	LOW	MEDIUM
60HZ	2300-4160	380-575	2300-41	60	2300-4160	2300-	-4160	380-460	2300-4160
50HZ	2300-3300	380-415	2300-33	300	2300-3300	2300-	-3300	380-415	2300-3300
TRANSITION	-	CLOSED	CLOSE	D	-	CLO	SED		-
% TAP	-	-	65	80	-	65	80		-
INRUSH AS % OF LRA	45	33	42.3	64	100	65	80		-

NOTES:

- 1. For motor starters above 4160V/60Hz and 3300V/50Hz contact your nearest Johnson Controls Sales office for a specific selection.
- 2. Minimum tap for 5DJ motor is 80%.

TABLE 16 - LOW VOLTAGE VARIABLE SPEED MODELS

Rated Voltage	Actual Voltage	Phase	Hz	Max. LRA	Max. Motor Hp	Min. FLA	Max. FLA
380	380			7610	845	300	1126
460	440/460/490	3	60	5777	790	200	880
460	440/460/480			7014	1048	300	1180
380	200/400			5780	658	200	880
300	380/400	2	50	8205	917	300	1180
415	415	3	50	5512	704	200	876
415	415 415			6938	900	300	1108

TABLE 17 - MEDIUM VOLTAGE FLOOR MOUNTED SOLID-STATE STARTER MOD-FLS

MODEL	MAXIMUM	MAXIMUM							
FLOOR MOUNTED MV-SSS	FLA	LRA							
36" CABINET UNIT MODEL REFERENCE CHART									
MVSSS0853R_095-V	95	1896							
MVSSS0853R_105-V	105	1896							
MVSSS0853R_140-V	140	1896							
MVSSS0853R_190-V	190	1896							
MVSSS0853R_280-V	280	1896							
MVSSS0853R_310-V	310	1896							
MVSSS0853R_360-V	360	1896							
MVSSS1708R_360-V	360	3796							
72" CABINET UNIT MODEL REFERENCE CHART									
MVSSS1708R_550-V	550	3796							

MEDIUM VOLTAGE FLOOR MOUNTED SOLID STATE STARTER NOMENCLATURE

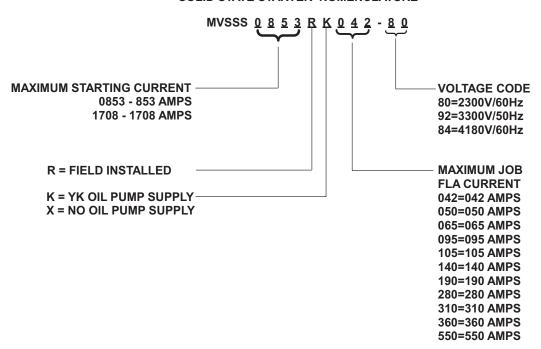
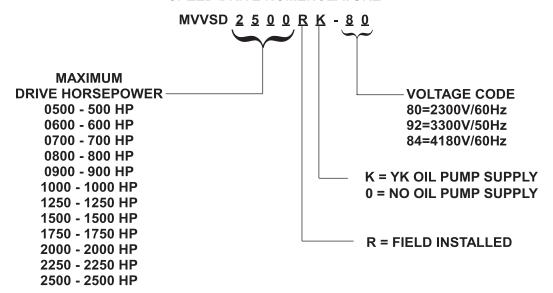
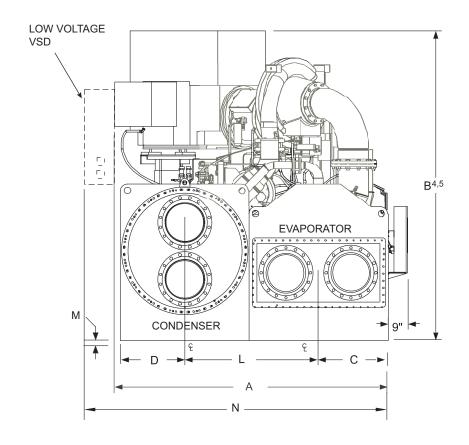
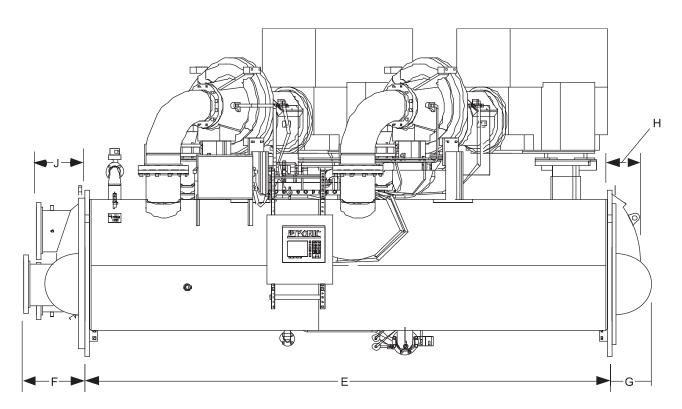



TABLE 18 - MEDIUM VOLTAGE VARIABLE SPEED DRIVE MODELS


TABLE 16 - MEDIO	MAX.	MAX.			
MV-VSD	MOTOR HP	FLA	VOLTAGE	PHASE	HZ
MVVSD0500RK-80	500	107			
MVVSD0600RK-80	600	129	1		
MVVSD0700RK-80	700	157	1		
MVVSD0800RK-80	800	172	1		
MVVSD0900RK-80	900	202	1		
MVVSD1000RK-80	1000	224	-		00
MVVSD1250RK-80	1250	280	2300	3	60
MVVSD1500RK-80	1500	336	1 1		
MVVSD1750RK-80	1750	392	i i		
MVVSD2000RK-80	2000	438	1		
MVVSD2250RK-80	2250	494			
MVVSD2500RK-80	2500	561			
MVVSD0500RK-94	500	78			
MVVSD0600RK-94	600	93	_		
MVVSD0700RK-94	700	110	_		
MVVSD0800RK-94	800	124	_		
MVVSD0900RK-94	900	141	_		
MVVSD1000RK-94	1000	156	3300	3	60
MVVSD1250RK-94	1250	195	3300	3	00
MVVSD1500RK-94	1500	235			
MVVSD1750RK-94	1750	274			
MVVSD2000RK-94	2000	312	_		
MVVSD2250RK-94	2250	345	_		
MVVSD2500RK-94	2500	391			
MVVSD0500RK-92S		62	_		
MVVSD0600RK-92S		74	_		
MVVSD0700RK-92S		87	_		
MVVSD0800RK-92S		99	4		
MVVSD0900RK-92S		112	-		
MVVSD1000RK-92S		125	4160	3	60
MVVSD1250RK-92S		155	-		
MVVSD1500RK-92S		186	-		
MVVSD1750RK-92S MVVSD2000RK-92S		217 248	-		
MVVSD2000RK-92S	2250	248			
MVVSD2500RK-92S		310	-		
MVVSD0500RK-92	500	78			
MVVSD0500RK-92	600	93			
MVVSD0700RK-92	700	110			
MVVSD0700RK-92	800	124			
MVVSD0900RK-92	900	141			
MVVSD1000RK-92	1000	156			
MVVSD1250RK-92	1250	195	3300	3	50
MVVSD1500RK-92	1500	235	7		
MVVSD1750RK-92	1750	274	7		
MVVSD2000RK-92	2000	312	7		
MVVSD2250RK-92	2250	345	7		
MVVSD2500RK-92	2500	391]		

MEDIUM VOLTAGE VARIABLE SPEED DRIVE NOMENCLATURE



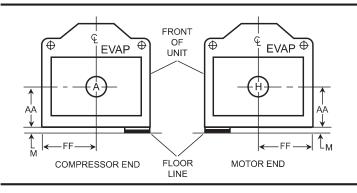
Dimensions

K COMPRESSOR UNITS

LD18373

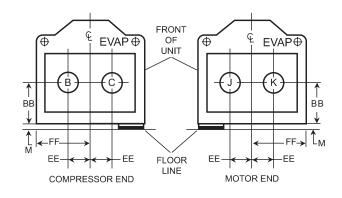
LD18374

	EV	APORATO	R - CONDE	NSER SH	ELL CODE	S FT-IN (N	IM)	
DIM.	B-L	M-M	N-B	E-C	F-D	G-E	H-F	K-K
Α.	11'-6"	11'-6"	11'-11"	13'-4"	14'-6"	14'-6"	15'-0"	16'-0"
A	(3505)	(3505)	(3632)	(4064)	(4420)	(4420)	(4572)	(4877)
В	12'-8"	12'-8"	13'-0"	13'-10"	14'-4"	14'-4"	14'-10"	15'-3"
В	(3861)	(3861)	(3962)	(4216)	(4369)	(4369)	(4521)	(4648)
	2'-8"	2'-8"	2'-11 1/2"	3'-5"	3'-9"	3'-9"	4'-0"	4'-0"
С	(813)	(813)	(902)	(1041)	(1143)	(1143)	(1219)	(1219)
_	2'-5 1/2"	2'-5 1/2"	2'-5 1/2"	2'-8"	3'-1 1/2"	3'-1 1/2"	3'-1 1/2"	3'-4"
D	(749)	(749)	(749)	(813)	(953)	(953)	(953)	(1016)
_	18'-0"	22'-0"	18'-0"	22'-0"	18'-0"	22'-0"	18'-0"	22'-0"
E	(5486)	(6706)	(5486)	(6706)	(5486)	(6706)	(5486)	(6706)
F	5'-1 1/2"	5'-1 1/2"	5'-5"	6'-1"	6'-10 1/2"	6'-10 1/2"	7'-1 1/2"	7'-4"
「	(1562)	(1562)	(1651)	(1854)	(2096)	(2096)	(2172)	(2235)
N	13'-3"	13'-3"	14'-5"	15'-10"	17'	NI/A	NI/A	NI/A
N	(4039)	(4039)	(4395)	(4826)	(5182)	N/A	N/A	N/A

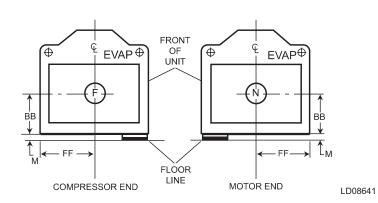

ADDITIONAL OPERATING HEIGHT CLEARANCE							
TYPE OF CHILLER MOUNTING M							
NEOPRENE PAD ISOLATORS	1-3/4" (44)						
SPRING ISOLATORS 1" DEFLECTION	1" (25)						
DIRECT MOUNT	3/4" (19)						

NOTES:

- 1. All dimensions are approximate. Certified dimensions are available on request.
- 2. For compact water boxes (shown above), determine overall unit length by adding water box depth to tube sheet length. For Marine Water Boxes, see pages 62-67.
- 3. Water nozzles can be located on either end of unit. Add 1/2" to nozzle length for flanges connections.
- 4. To determine overall height, add dimension "M" for the appropriate isolator type. See table above.
- 5. Use of motors with motor hoods may increase overall unit dimensions. Add 6" for 5DJ size motor.


EVAPORATORS - COMPACT WATER BOXES B, M, N SHELLS

1-PASS


NO	NOZZLE							
ARRAN	ARRANGEMENTS							
NUMBER	NUMBER EVAPORATOR							
OF	OF CODES							
PASSES	PASSES IN OUT							
4	Α	Н						
1	Н	A						

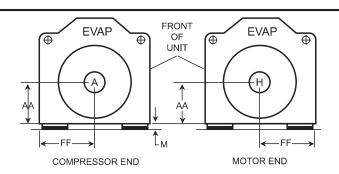
2-PASS

N	NOZZLE							
ARANGEMENTS								
NUMBER EVAPORATOR								
CODES								
OF	B, M, N							
PASSES	IN	OUT						
	В	С						
2	С	В						
	J	K						
	K	J						

3-PASS

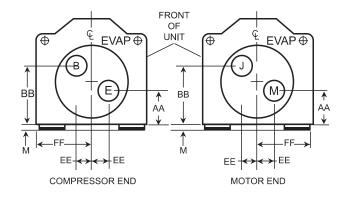
NOZZLE						
ARRANGEMENTS						
NUMBER	NUMBER EVAPORATOR					
OF	CODES					
PASSES	IN	OUT				
3	F	N				
3	N	F				

EVAPORATORS - COMPACT WATER BOXES B, M, N SHELLS

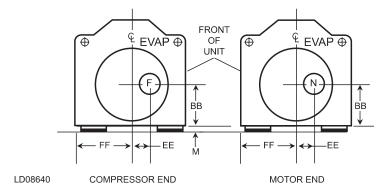

EVAPORATOR SHELL CODE		(IN)	PASSES			NOZZLE DIMENSIONS FT-IN (MM)						
	1 PASS	2 PASS	3 PASS	1-P/	1-PASS		2-PASS			3-PASS		
	1	2	3	AA ²	FF	AA	BB ²	EE	FF	BB ²	EE	FF
В,М	20"	18"	14"	2'-8 1/4" (819)	2'-8" (813)	_	2'-8 1/4" (819)	1'-3" (381)	2'-8" (813)	2'-8 1/4" (813)	_	2'-8" (813)
N	20"	18"	14"	2'-10 1/2" (876)	2'-11" (889)	_	2'-10 1/2" (889)	1'-3" (381)	2'-11" (889)	2'-10 1/2" (889)	_	2'-11" (889)
E	24"	20"	16"	4'-1" (1245)	3'-5" (1041)	3'-0" (914)	5'-2" (1575)	1'-1" (330)	3'-5" (1041)	4'-1" (1245)	1'-4" (406)	3'-5" (1041)
F,G	24"	20"	18"	4'-9 1/2" (1461)	3'-9" (1143)	3'-8 1/2" (1130)	5'-10 1/2" (1791)	1'-1" (330)	3'-9" (1143)	4'-9 1/2" (1461)	1'-4" (406)	3'-9" (1143)
н,к	24"	20"	18"	5'-0 1/2" (1537)	4'-0" (1219)	3'-11 1/2" (1207)	6'-1 1/2" (1867)	1'-1" (330)	4'-0" (1219)	5'-0 1/2" (1537)	1'-4" (406)	4'-0" (1219)

ADDITIONAL OPERATING HEIGHT CLEARANCE							
TYPE OF CHILLER MOUNTING	M						
NEOPRENE PAD ISOLATORS	1-3/4" (44)						
SPRING ISOLATORS 1" DEFLECTION	1" (25)						
DIRECT MOUNT	3/4" (19)						

NOTES:


- Standard water nozzles are furnished as welding stub outs with ANSI/AWWA C-606 couplings grooves, allowing the option of welding, flanges, or use of ANSI/AWWA C-606 couplings. Factory installed, class 150 (ANSI B16.5, round slip on, forged carbon steel with 1/16" raised face), water flanged nozzles are optional (add 1/2" to nozzle length). Companion flanges, nuts, bolts, and gaskets are not furnished.
- 2. Add dimension "M" for the appropriate isolator type.
- 3. One, two and three pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of evaporator nozzles may be used in combination with any pair of condenser nozzles.
- 4. Connected piping should allow for removal of compact water boxes for tube access and cleaning.

EVAPORATORS - COMPACT WATER BOXES E, F, G, H, K SHELLS


2-PASS

1-PASS

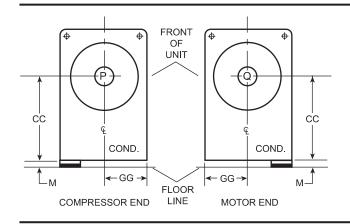
NOZZLE					
ARANGEMENTS					
NUMBER	EVAPO	RATOR			
OF	DES				
PASSES	E, F,G, H, K				
	IN	OUT			
	ı	_			
2	Е	В			
	_	_			
	М	J			

3-PASS

NOZZLE					
ARRANGEMENTS					
NUMBER	IBER EVAPORATOR				
OF	CODES				
PASSES	IN	OUT			
3	F	N			
3	N	F			

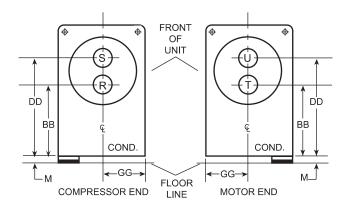
EVAPORATORS - COMPACT WATER BOXES E, F, G, H, K SHELLS

EVAPORATOR SHELL CODE		(IN)	PASSES			NO	NOZZLE DIMENSIONS FT-IN (MM)					
	1 PASS	2 PASS	3 PASS	1-P/	ASS		2-P/	ASS		3-PASS		
	1	2	3	AA ²	FF	AA	BB ²	EE	FF	BB ²	EE	FF
В,М	20"	18"	14"	2'-8 1/4" (819)	2'-8" (813)	_	2'-8 1/4" (819)	1'-3" (381)	2'-8" (813)	2'-8 1/4" (813)	_	2'-8" (813)
N	20"	18"	14"	2'-10 1/2" (876)	2'-11" (889)	_	2'-10 1/2" (889)	1'-3" (381)	2'-11" (889)	2'-10 1/2" (889)	_	2'-11" (889)
E	24"	20"	16"	4'-1" (1245)	3'-5" (1041)	3'-0" (914)	5'-2" (1575)	1'-1" (330)	3'-5" (1041)	4'-1" (1245)	1'-4" (406)	3'-5" (1041)
F,G	24"	20"	18"	4'-9 1/2" (1461)	3'-9" (1143)	3'-8 1/2" (1130)	5'-10 1/2" (1791)	1'-1" (330)	3'-9" (1143)	4'-9 1/2" (1461)	1'-4" (406)	3'-9" (1143)
н,к	24"	20"	18"	5'-0 1/2" (1537)	4'-0" (1219)	3'-11 1/2" (1207)	6'-1 1/2" (1867)	1'-1" (330)	4'-0" (1219)	5'-0 1/2" (1537)	1'-4" (406)	4'-0" (1219)

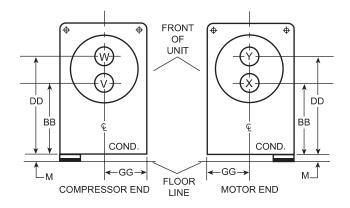

ADDITIONAL OPERATING HEIGHT CLEARANCE							
ADDITIONAL OPERATING REIGHT CLEARANCE							
TYPE OF CHILLER MOUNTING	M						
NEOPRENE PAD ISOLATORS	1-3/4" (44)						
SPRING ISOLATORS 1" DEFLECTION	1" (25)						
DIRECT MOUNT	3/4" (19)						

NOTES:

- Standard water nozzles are furnished as welding stub outs with ANSI/AWWA C-606 couplings grooves, allowing the option of welding, flanges, or use of ANSI/AWWA C-606 couplings. Factory installed, class 150 (ANSI B16.5, round slip on, forged carbon steel with 1/16" raised face), water flanged nozzles are optional (add 1/2" to nozzle length). Companion flanges, nuts, bolts, and gaskets are not furnished.
- 2. Add dimension "M" for the appropriate isolator type.
- 3. One, two and three pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of evaporator nozzles may be used in combination with any pair of condenser nozzles.
- 4. Connected piping should allow for removal of compact water boxes for tube access and cleaning.


CONDENSERS - COMPACT WATER BOXES

1-PASS


CONDENSER NOZZLE						
ARRANGEMENTS						
NUMBER	NUMBER CONDENSER					
OF PASSES	IN	OUT				
1	Р	Q				
	Q	Р				

2-PASS

CONDENSER NOZZLE							
ARRANGEMENTS							
NUMBER	NUMBER CONDENSER						
OF PASSES	IN	OUT					
2	R	S					
	T	U					

3-PASS

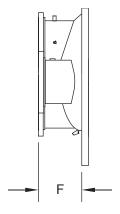
CONDENSER NOZZLE						
ARRANGEMENTS						
NUMBER CONDENSER						
OF PASSES	IN	OUT				
3	V	Υ				
	Х	W				

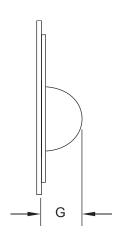
LD06843

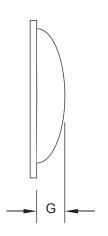
CONDENSERS - COMPACT WATER BOXES

CONDENSER	NOZZLE PIPE SIZE		NOZZLE DIMENSIONS FT-IN (MM)									
SHELL	NO. C	F PASSE	S (IN)			NOZZLE DIMENSIONS FI-IN (MINI)						
CODE	1 PASS	2 PASS	3 PASS	1 P/	ASS		2 PASS		3 PASS			
	1	2	3	CC ²	GG	BB ²	DD^2	GG	BB ²	DD	GG	
I M	20"	18"	14"	3'-6"	2'-5 1/2"	2'-5"	4'-7"	2'-5 1/2"	2'-5"	4'-7"	2'-5 1/2"	
L, M	20	10	14	(1067)	(749)	(737)	(1397)	(749)	(737)	(1397)	(749)	
В	24"	40"	16"	3'-6 3/4"	2'-5 1/2"	2'-4 1/2"	4'-9 1/4"	2'-5 1/2"	2'-4 1/4"	4'-9 1/4"	2'-5 1/2"	
P P	24	18"	10	(1086)	(749)	(724)	(1461)	(749)	(718)	(1461)	(749)	
	04"	20"	16"	3'-11 1/2"	2'-8"	2'-7 1/2"	5'-3 1/2"	2'-8"	2'-7 1/2"	5'-3 1/2"	2'-8"	
С	24"	20	16	(1207)	(813)	(800)	(1613)	(813)	(800)	(1613)	(813)	
D. F.	04"	20"	18"	4'-0"	3'-1 1/2"	2'-8 1/2"	5'-3 1/2"	3'-1 1/2"	2'-6"	5-6"	3'-1 1/2"	
D, E	24"	20"	18	(1219)	(953)	(826)	(1613)	(953)	(762)	(1676)	(953)	
_	04"	0.4"	00"	4'-4"	3'-1 1/2"	2'-9 1/2"	5'-10 1/2"	3'-1 1/2"	2'-8"	6'-0"	3'-1 1/2"	
F	24"	24"	20"	(1321)	(953)	(851)	(1791)	(953)	(813)	(1829)	(953)	
14		0.4"	00"	4'-6"	3'-4"	3'-0"	6'-0"	3-4"	2'-9 3/4"	6'-2 1/4"	3'-4"	
K	24"	24"	20"	(1372)	(1016)	(914)	(1829)	(1016)	(857)	(1886)	(1016)	

ADDITIONAL OPERATING HEIGHT CLEARANCE							
TYPE OF CHILLER MOUNTING	M						
NEOPRENE PAD ISOLATORS	1-3/4" (44)						
SPRING ISOLATORS 1" DEFLECTION	1" (25)						
DIRECT MOUNT	3/4" (19)						

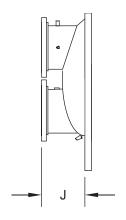

NOTES:

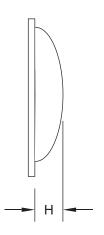

- Standard water nozzles are furnished as welding stub outs with ANSI/AWWA C-606 couplings grooves, allowing the option of welding, flanges, or use of ANSI/AWWA C-606 couplings. Factory installed, class 150 (ANSI B16.5, round slip on, forged carbon steel with 1/16" raised face), water flanged nozzles are optional (add 1/2" to nozzle length). Companion flanges, nuts, bolts, and gaskets are not furnished.
- 2. Add dimension "M" for the appropriate isolator type.
- 3. One, two and three pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of evaporator nozzles may be used in combination with any pair of condenser nozzles.
- 4. Connected piping should allow for removal of compact water boxes for tube access and cleaning.


EVAPORATORS - COMPACT WATER BOXES

B, M, N SHELLS

E, F, G, H, K SHELLS





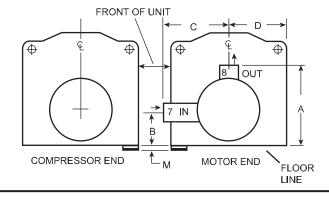
LD18375

EVAPORATOR - CONDENSER SHELL CODES FT-IN (MM)								
DIM.	B-L	M-M	N-B	E-C	F-D	G-E	H-F	K-K
_	2'-3/4"	2'-3/4"	2'-1 11/16"	2'-13/16"	2'-3"	2'-3"	2'-3 9/16"	2'-3 9/16"
	(629)	(629)	(660)	(635)	(686)	(686)	(699)	(699)
G	1'-4 1/2"	1'-4 1/2"	1'-5 11/16"	1'-4 3/16"	1'-6 1/4"	1'-6 1/4"	1'-6 7/8"	1'-6 7/8"
<u> </u>	(419)	(419)	(445)	(413)	(464)	(464)	(483)	(483)

CONDENSERS - COMPACT WATER BOXES

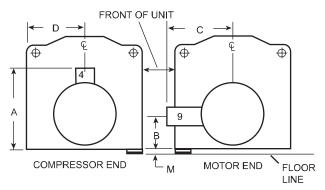
LD18376

	EVAPORATOR - CONDENSER SHELL CODES FT-IN (MM)							
DIM.	B-L	M-M	N-B	E-C	F-D	G-E	H-F	K-K
н	0'-11 11/16" (305)	0'-11 11/16" (305)	0'-11" (279)	0'-11" (279)	1'-2 9/16" (368)	1'-2 9/16" (368)	1'-3 9/16" (394)	1'-4 3/16" (413)
J	1'-7 3/8" (492)	1'-7 3/8" (492)	1'-7 1/2" (495)	1'-7 3/8" (492)	2'-1 1/2" (648)	2'-1 1/2" (648)	2'-2" (660)	2'-13/16" (635)


EVAPORATORS - MARINE WATER BOXES

EVAPORATOR		
1 PASS		
IN	OUT	
6	1	

2-PASS


1-PASS

EVAPORATOR		
2 PASS		
IN	OUT	
7	8	

IN-4, OUT-9: D-K Evaporators Only IN-9, OUT-4: All YD Evaporators

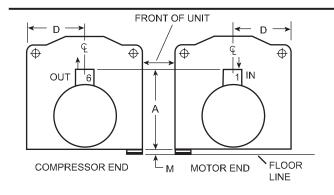
3-PASS

EVAPORATOR		
3 PASS		
IN	OUT	
9	4	

LD08644A

EVAPORATORS - MARINE WATER BOXES

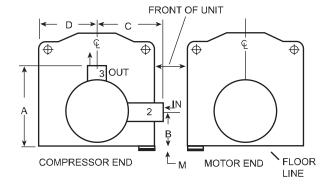
EVADODATOD	EVAPORATOR NOZZLE DIMENSIONS - FT-IN (mm)									
EVAPORATOR SHELL CODE	1 PASS		2 PASS			3 PASS				
SHELL CODE	A^5	D	A ⁵	B⁵	С	D	A^5	B⁵	С	D
ВΜ	6'-5 3/4"	2'-8"	6'-5 3/4"	1'-3 3/4"	3'-0 1/4"	2'-8"	6'-5 3/4"	1'-3 3/4"	3'-0 1/4"	2'-8"
B, M	(1975)	(813)	(1975)	(400)	(921)	(813)	(1975)	(400)	(921)	(813)
N	7'-1 1/4"	2' 11 1/2"	7'-1 1/4"	1'-9 3/4"	3'-0 3/4"	2' 11 1/2"	7'-1 1/4"	1'-9 3/4"	3'-0 3/4"	2'-11 1/2"
N	(2165)	(902)	(2165)	(540)	(933)	(902)	(2165)	(540)	(933)	(902)
_	7'-8 1/2"	3'-5"	7'-8 1/2"	4'-1"	3'-7 1/2"	3'-5"	7'-8 1/2"	4'-1"	3'-7 1/2"	3'-5"
E	(2350)	(1041)	(2350)	(1245)	(1105)	(1041)	(2350)	(1245)	(1105)	(1041)
F, G	8'-9 3/4"	3'-9"	8'-9 3/4"	4'-9 1/2"	4'-0 1/4"	3'-9"	8'-9 3/4"	4'-9 1/2"	4'-0 1/4"	3'-9"
	(2686)	(1143)	(2686)	(1461)	(1226)	(1143)	(2686)	(1461)	(1226)	(1143)
ци	9'-4"	4'-0"	9'-4"	5'-0 1/2"	4'-3 1/2"	4'-0"	9'-4"	5'-0 1/2"	4'-3 1/2"	4'-0"
H, K	(2845)	(1219)	(2845)	(1537)	(1308)	(1219)	(2845)	(1537)	(1308)	(1219)


EVAPORATOR	NOZZLE PIPE SIZE (IN)				
	Number OF PASSES				
SHELL CODE	1	2	3		
B,M	20"	18"	14"		
N	20"	18"	14"		
E	24"	20"	16"		
F.G	24"	20"	18"		
H, K	24"	20"	18"		

ADDITIONAL OPERATING HEIGHT CLEARANCE				
TYPE OF CHILLER MOUNTING	M			
NEOPRENE PAD ISOLATORS	1-3/4" (44)			
SPRING ISOLATORS 1" DEFLECTION	1" (25)			
DIRECT MOUNT	3/4" (19)			

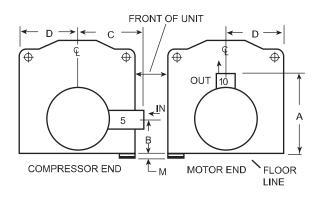
NOTES:

- 1. All dimensions are approximate. Certified dimensions are available upon request.
- 2. Standard water nozzles are Standard wall (0.375") pipe size, furnished as welding stub outs with ANSI/AWWA C-606 couplings grooves, allowing the option of welding, flanges, or use of ANSI/AWWA C-606 couplings. Factory installed, class 150 (ANSI B16.5, round slip on, forged carbon steel with 1/16" raised face), water flanged nozzles are optional (add 1/2" to nozzle length). Companion flanges, nuts, bolts, and gaskets are not furnished.
- 3. One, two, and three pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of evaporator nozzles may be used in combination with any pair of condenser nozzles. Compact water boxes on one heat exchanger may be used with Marine Water Boxes on the other heat exchanger.
- 4. Water must enter the water box through the bottom connection to achieve rated performance.
- 5. Add dimension "M" for the appropriate isolator type.


EVAPORATORS - MARINE WATER BOXES

EVAPORATOR		
1 PASS		
IN	OUT	
1	6	

2-PASS


1-PASS

EVAPORATOR			
2 PASS			
IN	OUT		
2	3		

B, C Shells Only

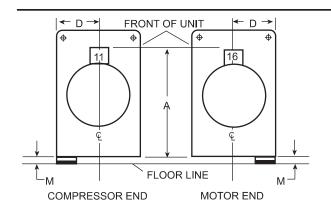
3-PASS

EVAPORATOR		
3 PASS		
IN	OUT	
5	10	

LD08644B

EVAPORATORS - MARINE WATER BOXES

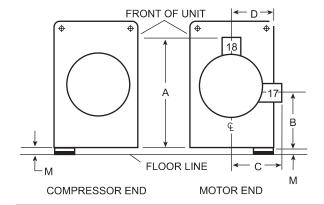
EVAPORATOR		EVAPORATOR NOZZLE DIMENSIONS - FT-IN (mm)								
SHELL CODE	1 PASS			2 PASS			3 PASS			
SHELL CODE	A^5	D	A ⁵	B⁵	С	D	A^5	B⁵	С	D
B, M	6'-5 3/4"	2'-8"	6'-5 3/4"	1'-3 3/4"	3'-0 1/4"	2'-8"	6'-5 3/4"	1'-3 3/4"	3'-0 1/4"	2'-8"
D, IVI	(1975)	(813)	(1975)	(400)	(921)	(813)	(1975)	(400)	(921)	(813)
N	7'-1 1/4"	2' 11 1/2"	7'-1 1/4"	1'-9 3/4"	3'-0 3/4"	2' 11 1/2"	7'-1 1/4"	1'-9 3/4"	3'-0 3/4"	2'-11 1/2"
IN	(2165)	(902)	(2165)	(540)	(933)	(902)	(2165)	(540)	(933)	(902)
E	7'-8 1/2"	3'-5"	7'-8 1/2"	4'-1"	3'-7 1/2"	3'-5"	7'-8 1/2"	4'-1"	3'-7 1/2"	3'-5"
	(2350)	(1041)	(2350)	(1245)	(1105)	(1041)	(2350)	(1245)	(1105)	(1041)
F, G	8'-9 3/4"	3'-9"	8'-9 3/4"	4'-9 1/2"	4'-0 1/4"	3'-9"	8'-9 3/4"	4'-9 1/2"	4'-0 1/4"	3'-9"
r, G	(2686)	(1143)	(2686)	(1461)	(1226)	(1143)	(2686)	(1461)	(1226)	(1143)
ши	9'-4"	4'-0"	9'-4"	5'-0 1/2"	4'-3 1/2"	4'-0"	9'-4"	5'-0 1/2"	4'-3 1/2"	4'-0"
H, K	(2845)	(1219)	(2845)	(1537)	(1308)	(1219)	(2845)	(1537)	(1308)	(1219)


EVAPORATOR	NOZZLE PIPE SIZE (IN) Number OF PASSES			
SHELL CODE	1	2	3	
B,M	20"	18"	14"	
N	20"	18"	14"	
E	24"	20"	16"	
F.G	24"	20"	18"	
H, K	24"	20"	18"	

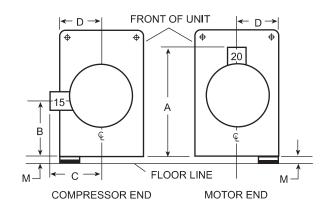
ADDITIONAL OPERATING HEIGHT CLEARANCE			
TYPE OF CHILLER MOUNTING M			
NEOPRENE PAD ISOLATORS	1-3/4" (44)		
SPRING ISOLATORS 1" DEFLECTION	1" (25)		
DIRECT MOUNT	3/4" (19)		

NOTES:

- 1. All dimensions are approximate. Certified dimensions are available upon request.
- 2. Standard water nozzles are Standard wall (0.375") pipe size, furnished as welding stub outs with ANSI/AWWA C-606 couplings grooves, allowing the option of welding, flanges, or use of ANSI/AWWA C-606 couplings. Factory installed, class 150 (ANSI B16.5, round slip on, forged carbon steel with 1/16" raised face), water flanged nozzles are optional (add 1/2" to nozzle length). Companion flanges, nuts, bolts, and gaskets are not furnished.
- 3. One, two, and three pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of evaporator nozzles may be used in combination with any pair of condenser nozzles. Compact water boxes on one heat exchanger may be used with Marine Water Boxes on the other heat exchanger.
- 4. Water must enter the water box through the bottom connection to achieve rated performance.
- 5. Add dimension "M" for the appropriate isolator type.


CONDENSERS - MARINE WATER BOXES

CONDENSER			
1 PASS			
IN OUT			
11	16		
16	11		


1-PASS

2-PASS

CONDENSER		
2 PASS		
IN	OUT	
17	18	

3-PASS

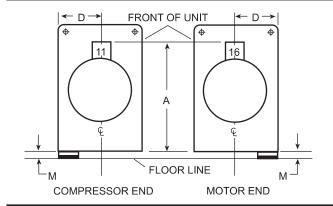
CONDENSER		
3 PASS		
IN OUT		
15	20	

LD08645A

CONDENSERS - MARINE WATER BOXES

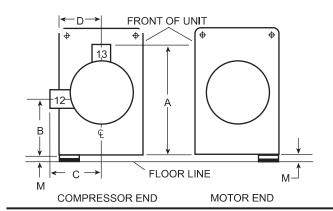
	CONDENSER NOZZLE DIMENSIONS IN (MM)									
SHELL CODE	1 PASS		2 PASS			3 PASS				
STILLE CODE	A ⁵	D	A ⁵	B⁵	С	D	A ⁵	B⁵	С	D
I M	6'-2 1/2"	2'-5 1/2"	6'-2 1/2"	2'-2"	2'-7 1/2"	2'-5 1/2"	6'-2 1/2"	2'-2"	2'-7 1/2"	2'-5 1/2"
L, M	(1892)	(749)	(1892)	(660)	(800)	(749)	(1892)	(660)	(800)	(749)
В	6' 5 1/2"	2'-5 1/2"	6' 5 1/2"	2' 1 1/4"	2'-10"	2'-5 1/2"	6' 5 1/2"	2' 1 1/4"	2'-10"	2'-5 1/2"
В	(1969)	(749)	(1969)	(641)	(864)	(749)	(1969)	(641)	(864)	(749)
С	7'-0"	2'-8"	7'-0"	2'-6"	2'-11 1/2	2'-8"	7'-0"	2'-6"	2'-11 1/2	2'-8"
	(2134)	(813)	(2134)	(762)	(902)	(813)	(2134)	(762)	(902)	(813)
D.E.	7'-4"	3-1 1/2"	7'-4"	2'-9"	3'-4"	3-1 1/2"	7'-4"	2'-5"	3'-4"	3-1 1/2"
D,E	(2235)	(953)	(2235)	(838)	(1016)	(953)	(2235)	(737)	(1016)	(953)
F	7'-10"	3-1 1/2"	7'-10"	3'-1"	3'-6"	3-1 1/2"	7'-10"	2'-8"	3'-6"	3-1 1/2"
	(2388)	(953)	(2388)	(940)	(1067)	(953)	(2388)	(813)	(1067)	(953)
к	8'-1 1/2"	3'-4"	8'-1 1/2"	3'-2"	3'-7 1/2"	3'-4"	8'-1 1/2"	2'-10"	3'-7 1/2"	3'-4"
_ ^	(2477)	(1016)	(2477)	(965)	(1105)	(1016)	(2477)	(864)	(1105)	(1016)

CONDENSER	NOZZLE PIPE SIZE (IN)			
SHELL		NO. OF PASSES		
CODE	1	2	3	
L, M	20"	18"	14"	
В	24"	18"	16"	
С	24"	20"	16"	
D, E	24"	20"	18"	
F, K	24"	24"	20"	


ADDITIONAL OPERATING HEIGHT CLEARANCE			
TYPE OF CHILLER MOUNTING M			
NEOPRENE PAD ISOLATORS	1-3/4" (44)		
SPRING ISOLATORS 1" DEFLECTION	1" (25)		
DIRECT MOUNT	3/4" (19)		

NOTES:

- 1. All dimensions are approximate. Certified dimensions are available upon request.
- 2. Standard water nozzles are Standard wall (0.375") pipe size, furnished as welding stub outs with ANSI/AWWA C-606 couplings grooves, allowing the option of welding, flanges, or use of ANSI/AWWA C-606 couplings. Factory installed, class 150 (ANSI B16.5, round slip on, forged carbon steel with 1/16" raised face), water flanged nozzles are optional (add 1/2" to nozzle length). Companion flanges, nuts, bolts, and gaskets are not furnished.
- 3. One , two , and three pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of evaporator nozzles may be used in combination with any pair of condenser nozzles. Compact water boxes on one heat exchanger may be used with Marine Water Boxes on the other heat exchanger.
- 4. Water must enter the water box through the bottom connection to achieve rated performance.
- 5. Add dimension "M" for the appropriate isolator type.


CONDENSERS - MARINE WATER BOXES

1-PASS


CONDENSER			
1 PASS			
IN	OUT		
11	16		
16	11		

2-PASS

CONDENSER			
2 PASS			
IN	OUT		
12	13		
-	-		

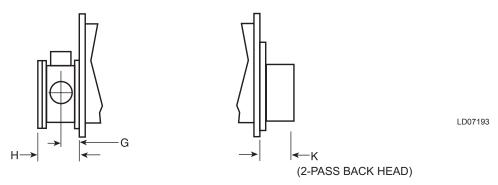
3-PASS

CONDENSER			
3 PASS			
IN	OUT		
-	-		
19	14		

LD08645B

CONDENSERS - MARINE WATER BOXES

	CONDENSER NOZZLE DIMENSIONS IN (MM)										
SHELL CODE	1 P/	ASS		2 P/	ASS			3 PASS			
STILLE CODE	A ⁵	D	A ⁵	B⁵	С	D	A ⁵	B⁵	С	D	
L, M	6'-2 1/2"	2'-5 1/2"	6'-2 1/2"	2'-2"	2'-7 1/2"	2'-5 1/2"	6'-2 1/2"	2'-2"	2'-7 1/2"	2'-5 1/2"	
L, IVI	(1892)	(749)	(1892)	(660)	(800)	(749)	(1892)	(660)	(800)	(749)	
В	6' 5 1/2"	2'-5 1/2"	6' 5 1/2"	2' 1 1/4"	2'-10"	2'-5 1/2"	6' 5 1/2"	2' 1 1/4"	2'-10"	2'-5 1/2"	
В	(1969)	(749)	(1969)	(641)	(864)	(749)	(1969)	(641)	(864)	(749)	
С	7'-0"	2'-8"	7'-0"	2'-6"	2'-11 1/2	2'-8"	7'-0"	2'-6"	2'-11 1/2	2'-8"	
C	(2134)	(813)	(2134)	(762)	(902)	(813)	(2134)	(762)	(902)	(813)	
D.E.	7'-4"	3-1 1/2"	7'-4"	2'-9"	3'-4"	3-1 1/2"	7'-4"	2'-5"	3'-4"	3-1 1/2"	
D,E	(2235)	(953)	(2235)	(838)	(1016)	(953)	(2235)	(737)	(1016)	(953)	
F	7'-10"	3-1 1/2"	7'-10"	3'-1"	3'-6"	3-1 1/2"	7'-10"	2'-8"	3'-6"	3-1 1/2"	
F	(2388)	(953)	(2388)	(940)	(1067)	(953)	(2388)	(813)	(1067)	(953)	
к	8'-1 1/2"	3'-4"	8'-1 1/2"	3'-2"	3'-7 1/2"	3'-4"	8'-1 1/2"	2'-10"	3'-7 1/2"	3'-4"	
^	(2477)	(1016)	(2477)	(965)	(1105)	(1016)	(2477)	(864)	(1105)	(1016)	

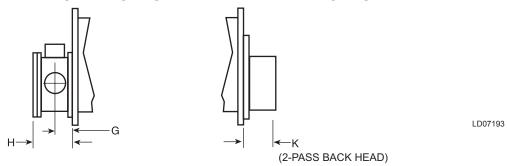

CONDENSER	NOZZLE PIPE SIZE (IN)						
SHELL		NO. OF PASSES					
CODE	1 2 3						
L, M	20"	18"	14"				
В	24"	18"	16"				
С	24"	20"	16"				
D, E	24"	20"	18"				
F, K	24"	24"	20"				

ADDITIONAL OPERATING HEIGHT CLEARANCE						
TYPE OF CHILLER MOUNTING M						
NEOPRENE PAD ISOLATORS	1-3/4" (44)					
SPRING ISOLATORS 1" DEFLECTION	1" (25)					
DIRECT MOUNT	3/4" (19)					

NOTES:

- 1. All dimensions are approximate. Certified dimensions are available upon request.
- 2. Standard water nozzles are Standard wall (0.375") pipe size, furnished as welding stub outs with ANSI/AWWA C-606 couplings grooves, allowing the option of welding, flanges, or use of ANSI/AWWA C-606 couplings. Factory installed, class 150 (ANSI B16.5, round slip on, forged carbon steel with 1/16" raised face), water flanged nozzles are optional (add 1/2" to nozzle length). Companion flanges, nuts, bolts, and gaskets are not furnished.
- 3. One , two , and three pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of evaporator nozzles may be used in combination with any pair of condenser nozzles. Compact water boxes on one heat exchanger may be used with Marine Water Boxes on the other heat exchanger.
- 4. Water must enter the water box through the bottom connection to achieve rated performance.
- 5. Add dimension "M" for the appropriate isolator type.

EVAPORATORS - MARINE WATER BOXES



1-PASS EVAPORATOR SHELL	DESIGN WORKING	EVAPORATOR NOZZLE DIMENSIONS - FT-IN (MM)			
CODE	PRESSURE PSIG (KPA)	G	Н		
ВМ	150 (1034)	1'-2 1/2" (368)	2'-8" (813)		
B,M	300 (2068)	1'-3 3/4" (400)	2'-11 1/4" (895)		
N	150 (1034)	1'-2 1/2" (368)	2'-8" (813)		
l N	300 (2068)	1'-3 1/4" (387)	2'-9 1/2" (851)		
Е	150 (1034)	1'-6 1/2" (470)	3'-4 1/2" (1029)		
_	300 (2068)	1'-9 3/4" (552)	3'-11" (1194)		
F,G	150 (1034)	1'-7" (483)	3'-5 3/4" (1060)		
r,G	300 (2068)	1'-10" (559)	4'-0" (1219)		
H,K	150 (1034)	1'-6 1/2" (470)	3'-5" (1041)		
n,K	300 (2068)	1'-9 1/2" (546)	3'-11" (1194)		

2-PASS EVAPORATOR SHELL	DESIGN WORKING PRESSURE PSIG	EVAPORATOR NOZZLE DIMENSIONS - FT-IN (MM)					
CODE	(KPA)	G	н	κ			
D.M.	150 (1034)	1'-1 1/2" (343)	2'-6" (762)	0'-11" (279)			
B,M	300 (2068)	1'-2 3/4" (375)	2'-9 1/4" (845)	1'-2 1/2" (368)			
N	150 (1034)	1'-1 1/2" (343)	2'-6" (762)	0'-11" (279)			
N	300 (2068)	1'-2 1/2" (368)	2'-8" (813)	1'-3" (381)			
-	150 (1034)	1'-4 1/4" (413)	3'-0" (914)	1'-4" (406)			
E	300 (2068)	1'-7" (483)	3'-5 1/2" (1054)	1'-5 1/2" (445)			
FC	150 (1034)	1'-4 1/2" (419)	3'-1 1/4" (946)	1'-6 1/4" (464)			
F,G	300 (2068)	1'-7 1/4" (489)	3'-6 1/2" (1080)	1'-7 1/2" (495)			
11.17	150 (1034)	1'-4 1/4" (413)	3'- 1/2" (927)	1'-7" (483)			
H,K	300 (2068)	1'-6 3/4" (476)	3'-5 1/2" (1054)	1'-8" (508)			

3-PASS EVAPORATOR SHELL	DESIGN WORKING	EVAPORATOR NOZZLE DIMENSIONS - FT-IN (MM)			
CODE	PRESSURE PSIG (KPA)	G	Н		
B,M	150 (1034)	1'-1 1/2" (343)	2'-6" (762)		
B,IVI	300 (2068)	1'-2 3/4" (375)	2'-9 1/4" (845)		
N	150 (1034)	1'-1 1/2" (343)	2'-6" (762)		
IN IN	300 (2068)	1'-2 1/2" (368)	2'-8" (813)		
E	150 (1034)	1'-2 1/4" (362)	2'-8" (813)		
	300 (2068)	1'-4 1/2" (419)	3'- 1/2" (927)		
F.C.	150 (1034)	1'-3 1/2" (394)	3'- 10 3/4" (1187)		
F,G	300 (2068)	1'-6" (457)	3'-4" (1016)		
пк	150 (1034)	1'-3" (381)	2'-10" (864)		
H,K	300 (2068)	1'-5 1/2" (445)	3'-3" (991)		

CONDENSERS - MARINE WATER BOXES

1-PASS	DESIGN WORKING	CONDENSER NOZZLE DIMENSIONS - FT-IN (MM)		
CONDENSER SHELL CODE	PRESSURE PSIG (KPA)	G	H	
1.84	150 (1034)	1'-2 1/2" (368)	2'-7 1/4" (794)	
L,M	300 (2068)	1'-3 1/2" (394)	2'-10 1/4" (870)	
В	150 (1034)	1'-4 1/2" (419)	2'-11 1/2" (902)	
В	300 (2068)	1'-5 1/4" (438)	3'-2" (965)	
С	150 (1034)	1'-4 1/2" (419)	3'-0" (914)	
C	300 (2068)	1'-5 1/2" (445)	3'-3 3/4" (1010)	
D.E.	150 (1034)	1'-6 3/4" (476)	3'-4 3/4" (1035)	
D,E	300 (2068)	1'-9 3/4' (552)	3'-10 3/4" (1187)	
F	150 (1034)	1'-7" (483)	3'-5 1/4" (1048)	
F	300 (2068)	1'-11" (584)	4'-1 1/4" (1251)	
К	150 (1034)	1'-6 1/2" (470)	3'-4 1/2" (1029)	
r\ [300 (2068)	1'-9 3/4" (552)	3'11" (1194)	

2-PASS	DESIGN WORKING	CONDENSER NOZZLE					
CONDENSER SHELL	PRESSURE PSIG	DIMENSIONS - FT-IN (MM)					
CODE	(KPA)	G	Н	K			
L,M	150 (1034)	1'-1 1/2" (343)	2'-5 1/4" (743)	0'-11 3/4" (298)			
L,IVI	300 (2068)	1'-2 1/2" (368)	2'-8 1/4" (819)	1'-0" (305)			
В	150 (1034)	1'-1 1/2" (343)	2'-5 1/2" (749)	0'-11" (279)			
В	300 (2068)	1'-2 1/4" (362)	2'-8" (813)	1'-1 1/2" (343)			
С	150 (1034)	1'-2 1/2" (368)	2'-8' (813)	0'-11" (279)			
	300 (2068)	1'-3 3/4" (400)	1'-11 1/4" (591)	1'-2 1/2" (368)			
D.E.	150 (1034)	1'-4 1/2" (419)	3'- 1/4" (921)	1'-2 1/2" (368)			
D,E	300 (2068)	1'-5 1/2" (445)	3'-2 1/4" (972)	1'-3 1/2" (394)			
-	150 (1034)	1-7" (483)	3'-5 1/2" (1048)	1'-3 1/2" (394)			
F	300 (2068)	1'-11" (584)	4'-1 1/4" (1251)	1'-4 1/2" (419)			
V	150 (1034)	1'-6 1/2" (470)	3'-4 1/2" (1029)	1'-4 1/4" (413)			
K	300 (2068)	1'-9 3/4" (552)	3'-11" (1194)	1'-5 1/2" (445)			

3-PASS	DESIGN WORKING	CONDENSER NOZZLE DIMENSIONS (3-PASS) (MM)			
CONDENSER SHELL CODE	PRESSURE PSIG (KPA)				
GONDENGER GREEF GODE	TRESCORE TOTO (REA)	G	H		
L,M	150 (1034)	1'-1 1/2" (343)	2'-5 1/4" (743)		
L,IVI	300 (2068)	1'-2 1/2" (368)	2'-8 1/4" (819)		
В	150 (1034)	1'- 1/2" (343)	2'-5 1/2' (749)		
	300 (2068)	1'-2 1/4" (362)	2'-8" (813)		
С	150 (1034)	1'-2 1/2" (368)	2'-8" (813)		
	300 (2068)	1'-3 3/4" (400)	2'-11 1/4" (591)		
D,E	150 (1034)	1'-3 1/4' (387)	2'-9 3/4" (857)		
J,L	300 (2068)	1'-5 1/2" (495)	3'-2 1/4' (972)		
F	150 (1034)	1'-4 3/4" (425)	3'-3 3/4" (1010)		
'	300 (2068)	1'-7 3/4" (502)	3'-6 3/4" (1086)		
K	150 (1034)	1'-4 1/4" (413)	3'-0" (914)		
	300 (2068)	1'-7" (483)	3'-5 1/2" (1054)		

Isolators

NEOPRENE ISOLATORS

Shells: B/L, M/M, N/B

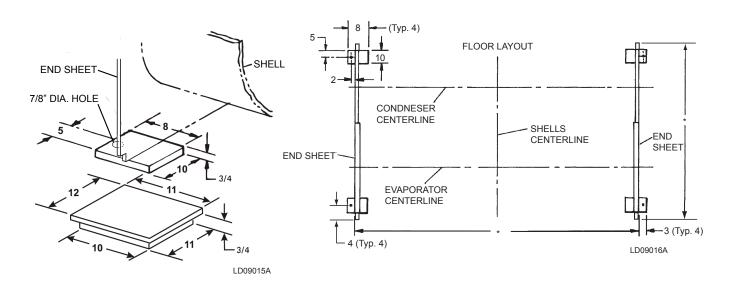


FIGURE 5 - NEOPRENE ISOLATORS DIMENSIONS (INCHES)

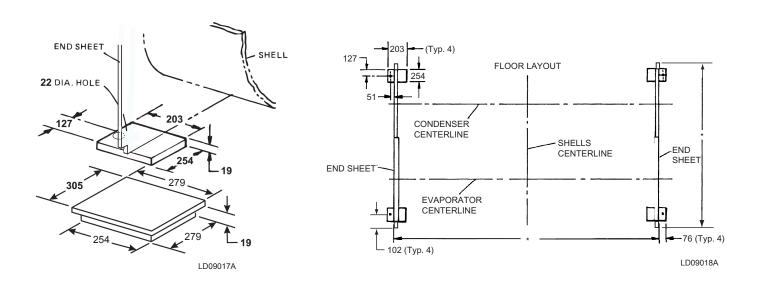


FIGURE 6 - NEOPRENE ISOLATORS DIMENSIONS (MM)

Isolators (Cont'd)

NEOPRENE ISOLATORS

Shells: E/C, F/D

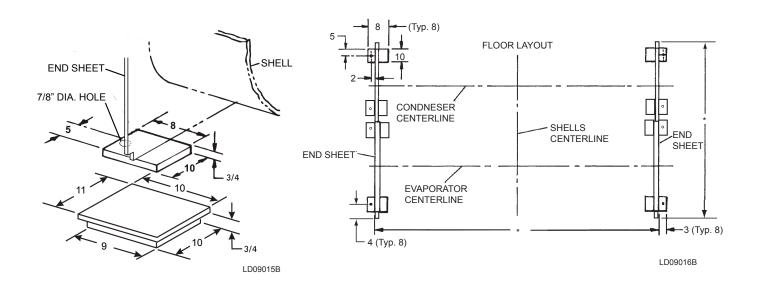


FIGURE 7 - NEOPRENE ISOLATORS DIMENSIONS (INCHES)

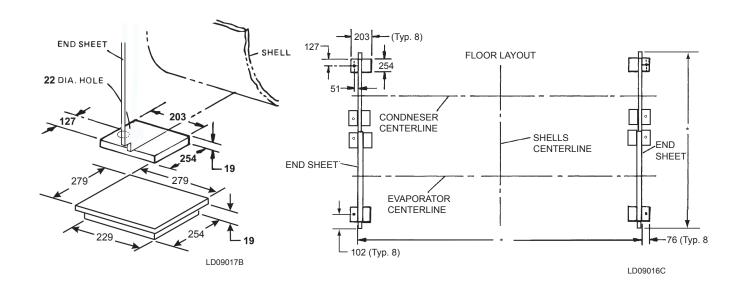


FIGURE 8 - NEOPRENE ISOLATORS DIMENSIONS (MM)

Isolators (Cont'd)

NEOPRENE ISOLATORS

Shells: G/E, H/F, K/K

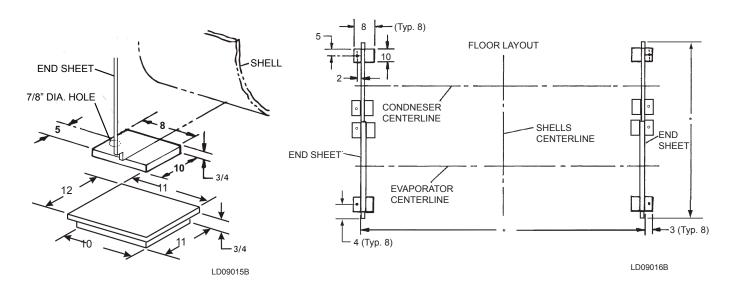


FIGURE 9 - NEOPRENE ISOLATORS DIMENSIONS (INCHES)

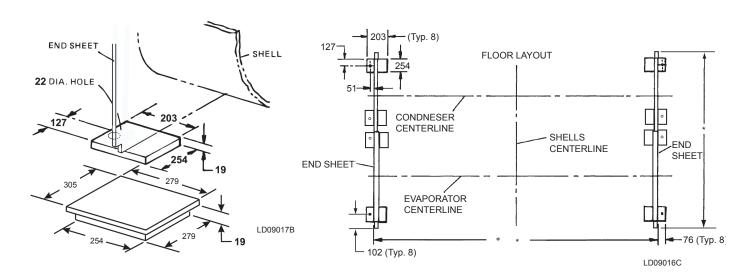
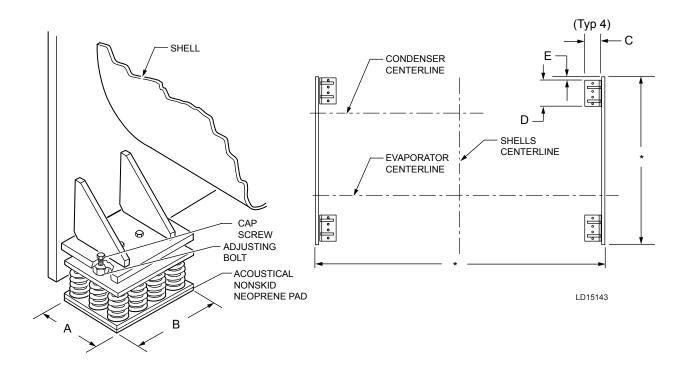
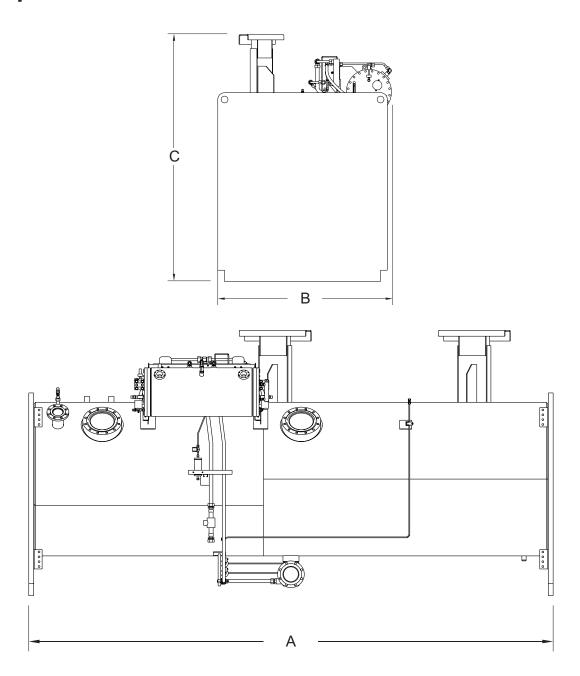



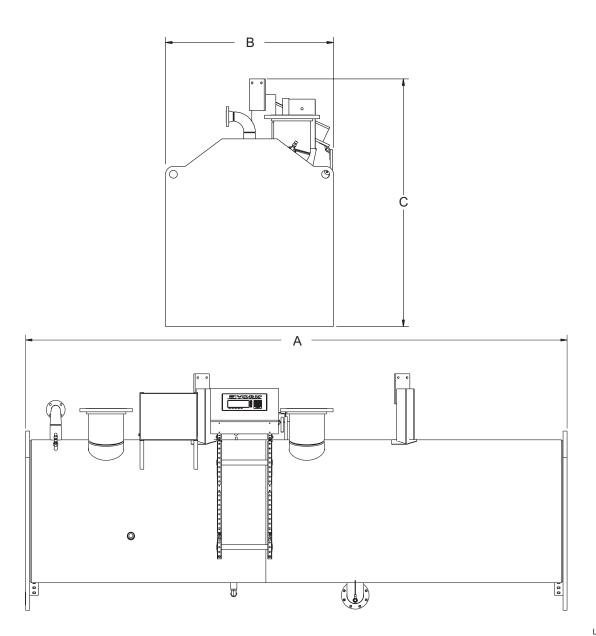
FIGURE 10 - NEOPRENE ISOLATORS DIMENSIONS (MM)

Isolators (Cont'd)


SPRING ISOLATORS

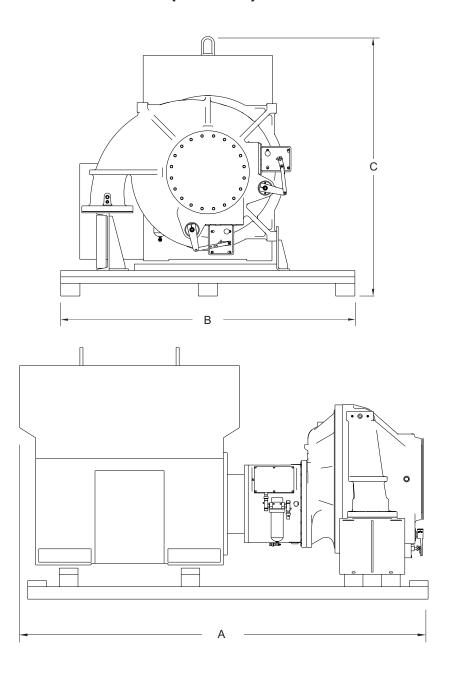
	EVAPORATOR - CONDENSER SHELL CODES								
	B-L	M-M	N-B	E-C	F-D	G-E	H-F	K-K	
Α	11	11	16	16	16	16	16	16	
	(280)	(280)	(406)	(406)	(406)	(406)	(406)	(406)	
В	14	14	16	16	16	16	16	16	
	(356)	(356)	(406)	(406)	(406)	(406)	(406)	(406)	
С	8	8	17	17	17	17	17	17	
	(203)	(203)	(432)	(432)	(432)	(432)	(432)	(432)	
D	13-1/2	13-1/2	16	16	16	16	16	16	
	(343)	(343)	(406)	(406)	(406)	(406)	(406)	(406)	
E	1/2	1/2	3	3	3	3	3	3	
	(13)	(13)	(76)	(76)	(76)	(76)	(76)	(76)	

FIGURE 11 - SPRING ISOLATORS DIMENSIONS INCHES (MM)


Component Dimensions

LD18377

CONDENSER SECTION DIMENSIONS							
UNIT MODEL	DII	MENSIONS (FT.	IN.)		IMENSIONS (MI	VI)	
COMPR/SHELLS	Α	В	С	Α	В	С	
K1/L SHELLS	18-0"	5'-8"	7'-8 3/4"	5486	1727	2356	
K2/M SHELLS	22'-0"	5'-8"	7'-8 3/4"	6708	1727	2356	
K2/B SHELLS	18'-0"	5'-9"	8'-0 3/4"	5486	1753	2,457	
K3/C SHELLS	22'-0"	6'-2"	8'-7 1/4"	6708	1880	2,623	
K3/D SHELLS	18'-0"	6'-6"	9'-1 1/4"	5486	1,981	2,775	
K4/E SHELLS	22'-0"	6'-6"	9'-1 1/4"	6708	1981	2775	
K4/F SHELLS	18'-0"	6'-8"	9'-7 1/4"	5486	2032	2927	
K7/K SHELLS	22'-0"	7'-3"	9'-8"	6708	2210	2946	


Component Dimensions (Cont'd)

LD18378

EVAPORATOR SECTION DIMENSIONS							
UNIT MODEL	DI	MENSIONS (FT. II	٧.)	D	IMENSIONS (MM	1)	
COMPR/SHELLS	Α	В	С	Α	В	С	
K1/B SHELLS	18-0"	5'-4"	8'-2"	5486	1626	2489	
K2/M SHELLS	22'-0"	5'-4"	8'-0"	6706	1626	2438	
K2/N SHELLS	18'-0"	5'-11"	8'-4"	5486	1803	2540	
K3/E SHELLS	22'-0"	6'-10"	9'-0"	6706	2083	2743	
K3/F SHELLS	18'-0"	7'-6"	9'-6"	5486	2286	2896	
K4/G SHELLS	22'-0"	7'-6"	9'-6"	6706	2286	2896	
K4/H SHELLS	18'-0"	8'-0"	10'-0"	5486	2438	3048	
K7/K SHELLS	22'-0"	8'-0"	10'-1"	6706	2438	3073	

Component Dimensions (Cont'd)

LD18379

DRIVELINE SECTION (TWO)								
UNIT MODEL	DI	DIMENSIONS (FT./IN.)			DIMENSIONS (MM)			
COMPR./ SHELLS	Α	В	С	Α	В	С		
K1	10'-9"	6'-6"	7'-8"	3277	1981	2337		
K2	10'-9"	6'-6"	7'-8"	3277	1981	2337		
K3	11'-3"	6'-10"	7'-8"	3429	2083	2337		
K4	11'-3"	6'-10"	7'-8"	3429	2083	2337		
K7	13'-0"	7'-0"	7'-0"	3962	2134	2134		

Weights

TABLE 19 - APPROXIMATE UNIT WEIGHT INCLUDING MOTOR & 150 # COMPACT WATER BOXES 1

SHELLS	COMPRESSOR	SHIPPING WEIGHT	OPERATION WEIGHT-	EST. REFRIGERANT	
SHELLS	COWIFRESOUR	LBS (kg) ²	LBS (kg)	CHARGE - LBS (kg) 3	
B-L	K1	74800	92500	6000	
D-L	NI NI	(33926)	(41953)	(2721)	
M-M	K2	83200	104100	7300	
IVI-IVI	NZ	(37735)	(47215)	(3311)	
N-B	K2	84200	105100	7200	
N-B	r\Z	(38189)	(47668)	(3266)	
E-C	K3	116600	147100	10600	
E-C		(52884)	(66717)	(4808)	
F-D	K3	125500 4	157500	9800	
	NO NO	(56921)	(71434)	(4445)	
G-E	K4	141100 4	179100	12200	
	1\4	(63996)	(81231)	(5533)	
H-F	K4	139000 4	176300	11500	
		(63043)	(79961)	(5216)	
K-K	K7	174100 4	222200	15800	
	IN/	(78963)	(100779)	(7166)	

^{1.} Refer to product drawings for detailed weight information.

TABLE 20 - MARINE WATER BOX WEIGHTS - LBS(KG) (TO BE ADDED TO STANDARD UNIT WEIGHTS SHOWN ABOVE).

EVAP	SHIPPING WEIGHT EVAP INCREASE (KG)		OPERATING WEIGHT INCREASE (KG)		COND.	SHIPPING WEIGHT INCREASE (KG)		OPERATING WEIGHT INCREASE (KG)					
CODE	1-PASS	2-PASS	3-PASS	1-PASS	2-PASS	3-PASS	CODE	1-PASS	2-PASS	3-PASS	1-PASS	2-PASS	3-PASS
В	7124	3851	7086	8966	5520	8755		3808	1947	3960	5901	3195	5256
В	(3231)	(1747)	(3214)	(4067)	(2504)	(3971)	_	(1727)	(883)	(1796)	(2676)	(1449)	(2384)
М	7124	3851	7086	8966	5520	8755	М	3808	1947	3960	5901	3195	5256
IVI	(3231)	(1747)	(3214)	(4067)	(2504)	(3971)	IVI	(1727)	(883)	(1796)	(2676)	(1449)	(2384)
l N	7088	3604	7244	9319	5758	9320	В	5092	2498	5060	7103	3945	6631
IN	(3215)	(1635)	(3286)	(4227)	(2612)	(4227)	В	(2309)	(1133)	(2295)	(3222)	(1789)	(3007)
E	10692	6554	13316	14334	9502	15708	С	5768	2882	5826	8127	4864	7872
	(4849)	(2973)	(6039)	(6501)	(4310)	(7124)	C	(2616)	(1307)	(2642)	(3686)	(2206)	(3570)
F	15696	8370	16778	19517	12191	20599	D	7394	3889	7592	10256	6333	9722
	(7119)	(3796)	(7610)	(8852)	(5529)	(9343)	D	(3354)	(1764)	(3443)	(4652)	(2872)	(4409)
G	15696	8370	16778	19517	12191	20599	E	7394	3889	7592	10256	6333	9722
	(7119)	(3796)	(7610)	(8852)	(5529)	(9343)		(3354)	(1764)	(3443)	(4652)	(2872)	(4409)
н	17374	8478	16744	22366	12630	20267	F	8422	4643	8910	11745	7965	11637
	(7880)	(3845)	(7594)	(10144)	(5728)	(9192)	r	(3820)	(2106)	(4041)	(5327)	(3613)	(5278)
К	17374	8478	16744	22366	12630	20267	К	10332	5520	10798	14048	9236	13809
	(7880)	(3845)	(7594)	(10144)	(5728)	(9192)	r\	(4686)	(2504)	(4897)	(6371)	(4189)	(6263)

^{2.} Does not include refrigerant charge.

^{3.} Add 5% for 1" tube option.

^{4.} Unit shipped disassembled. Consult the performance page for individual weight.

Guide Specifications

GENERAL

Furnish and install where indicated on the drawings a dual centrifugal compresso
liquid chilling Unit(s). Each unit shall produce a capacity oftons, coolingGPM
of from°F to °F when supplied with GPM of condenser wate
at°F. Total power input (two motors) shall not exceed kW with an IPL\
(NPLV) of The evaporator shall be selected forfouling factor and a maxi-
mum liquid pressure drop offt. Water side shall be designed for 150 PSIG working
pressure. The condenser shall be selected forfouling factor and maximum liquid
pressure drop offt. Waterside shall be designed for 150 PSIG working pressure.
Low voltage units:
Low voitage units.
Power shall be supplied to the compressor drive motors atvolts - 3 phase - (60
(50) Hertz.
Medium voltage units:
Power shall be supplied to the compressor drive motors atvolts - 3 phase - (60
(50) Hertz. Auxiliary power to the oil pump motors shall be supplied at volts – 3
phase – (60) (50) Hertz and controls shall be supplied at 115 volts – 1 phase – (60) (50
Hertz.

Performance shall be rated in accordance with the latest edition of AHRI Standard 550/590 as applicable.

Each unit shall be completely factory packaged including evaporator, condenser, sub cooler, compressors, open motors, lubrication system, Control Center, and all interconnecting unit piping and wiring. The chiller shall be painted prior to shipment. Larger (K3 to K7 compressor) size chillers shall be shipped disassembled, with the drivelines removed and skidded and the evaporator and condenser split. The initial charge of oil and refrigerant shall be supplied, shipped in containers and cylinders for field installation in the chiller.

COMPRESSORS

Two centrifugal compressors shall be provided, operating in parallel and utilizing a common refrigerant circuit on the chiller. An electrically operated tight closing butterfly valve shall be furnished in the discharge of each compressor, to allow either compressor to be turned off at low chiller loads.

Each compressor shall be a single stage centrifugal type, powered by an open-drive electric motor. The housing shall be fully accessible with vertical circular joints, with the complete operating assembly removable from the compressor and scroll housing. Compressor castings shall be designed for a minimum 235 PSIG working pressure and hydrostatically pressure tested at a minimum of 352 PSIG. The rotor assembly shall consist of a heat treated alloy steel drive shaft and impeller shaft with a cast aluminum, fully shrouded impeller. The impeller shall be designed for balanced thrust, dynamically balanced and overspeed tested for smooth, vibration free operation. Insert type journal and thrust bearings shall be fabricated of aluminum alloy, precision bored and axially grooved.

Internal single helical gears with crowned teeth shall be designed so that more than one tooth is in contact at all times to provide even load distribution and quiet operation. Each gear shall be individually mounted in its own journal and thrust bearings to isolate it from impeller and motor forces. Shaft seal shall be provided in double bellows, double seal and cartridge type. A gravity fed oil reservoir shall be built into the top of the compressor to provide lubrication during coast down in the event of a power failure.

Capacity control shall be achieved by use of pre-rotation vanes to provide fully modulating control from full load to minimum load. Control shall automatically compensate for adverse operating conditions, such as fouled tubes, and adjust to prior operation after correction of these conditions.

The unit shall be capable of continuous, reliable operation with low entering condenser fluid temperature at all load conditions as outlined on the equipment schedule. An external electric actuator shall automatically control pre rotation vane position for each compressor.

LUBRICATION SYSTEM

Lubrication oil shall be force fed to all compressor bearings, gears, and rotating surfaces by variable speed oil pumps mounted in a common pump housing or oil reservoir. Each oil pump shall vary oil flow to its compressor based on operating and stand by conditions, ensuring adequate lubrication at all times. The oil pump shall operate prior to start up, during compressor operation and during coast down. Each compressor shall have an internal auxiliary reservoir to provide lubrication during coast down in the event of a power failure.

A common oil reservoir mounted below the dual centrifugal compressors shall contain a 2 HP submersible oil pump for each compressor. Each oil pump shall be built into a removable cover, one at each end of the reservoir. The oil reservoir shall be UL listed and shall be factory air strength tested at 1.1 times design working pressure.

Two 2kW immersion oil heaters shall be provided, one in each pump cover. The heaters shall be thermostatically controlled to remove refrigerant from the oil.

Oil cooling shall be done via a refrigerant cooled oil cooler at the discharge of each oil pump. A thermostatically controlled expansion valve shall maintain the required oil temperature supply from each oil cooler to its compressor. Oil shall be filtered by externally mounted ½ micron replaceable cartridge oil filters, equipped with service valves. An automatic oil return system to recover any oil that may have migrated to the evaporator shall be provided. Oil piping shall be completely factory installed and tested.

MOTOR DRIVELINE

Each compressor motor shall be an open drip proof, squirrel cage, induction type operating at 3570 rpm (2975 rpm for 50 Hz operation).

Each open motor shall be provided with a D flange, bolted to a cast iron adaptor mounted on the compressor to allow the motor to be rigidly coupled to the compressor to provide factory alignment of motor and compressor shafts. Each Motor drive shaft shall be directly connected to its compressor shaft with a flexible disc coupling. The coupling shall have all metal construction with no wearing parts to assure long life, and no lubrication requirements to provide low maintenance. For units utilizing remote starters or drives, a large steel terminal box with gasketed front access cover shall be provided for field connected conduit. Overload/overcurrent transformers shall be furnished with all units.

EVAPORATOR

Evaporator shall be of the shell and tube, flooded type designed for a minimum of 180 PSIG (12.4 barg) working pressure on the refrigerant side. Shell shall be fabricated from rolled carbon steel plates with fusion welded seams, carbon steel tube sheets, drilled and reamed to accommodate the tubes, and intermediate tube supports spaced no more than four feet apart. The refrigerant side of each shell is designed, tested and stamped in accordance with ASME Boiler and Pressure Vessel Code, Section VIII - Division I, or other pressure vessel code as appropriate. Heat exchanger tubes shall be high efficiency, externally and internally enhanced type. Tubes shall utilize the "skip fin" design, providing a smooth internal and external surface at each intermediate tube support. This provides extra wall thickness and non work-hardened copper at the support location, extending the life of the heat exchangers. If skip fin tubes are not used, minimum tube wall thickness shall be 0.035" (0.9 mm). Each tube shall be roller expanded into the tube sheets providing a leak proof seal, and be individually replaceable. Water velocity through the tubes shall not exceed 12 ft./sec. (3.65 m/sec). A liquid level sight glass shall be provided on the side of the shell to aid in determining proper refrigerant charge and to check condition of the refrigerant charge. Aluminum mesh eliminators shall be located above the tube bundle to prevent liquid refrigerant carryover to the compressor. The evaporator shall have a refrigerant relief device sized to meet the requirements of the ASHRAE 15 Safety Code for Mechanical Refrigeration.

Water boxes shall be removable to permit tube cleaning and replacement. Stub out water connections having ANSI/AWWA C 606 couplings grooves shall be provided. Water boxes shall be designed for 150 PSIG (1034 kPa) design working pressure and be tested at 225 PSIG (1550 kPa). Vent and drain connections with plugs shall be provided on each water box. Low flow protection shall be provided by a thermal type flow sensor, factory mounted in the water nozzle connection and wired to the chiller panel.

CONDENSER

Condenser shall be of the shell and tube type, designed for a minimum of 235 PSIG (1620 kPa) working pressure on the refrigerant side. Shell shall be fabricated from rolled carbon steel plates with fusion welded seams. Carbon steel tube sheets, drilled and reamed to accommodate the tubes, are welded to the end of each shell. Intermediate tube supports are drilled and reamed to eliminate sharp edges, fabricated from carbon steel plates. The refrigerant side of each shell is designed, tested and stamped in accordance with ASME Boiler and Pressure Vessel Code, Section VIII – Division I, or other pressure vessel code as appropriate.

Heat exchanger tubes shall be high efficiency, externally and internally enhanced type. Tubes shall utilize the "skip fin" design, providing a smooth internal and external surface at each intermediate tube support. This provides extra wall thickness and non work hardened copper at the support location, extending the life of the heat exchangers. If skip fin tubes are not used, minimum tube wall thickness shall be 0.035" (0.9 mm). Each tube shall be roller expanded into the tube sheets providing a leak proof seal, and be individually replaceable. Water velocity through the tubes shall not exceed 12 ft./sec. (3.65 m/sec.). A liquid level sight glass shall be provided on the side of the shell to aid in determining proper refrigerant charge and to check condition of the refrigerant charge. The condenser shall have dual refrigerant relief devices; each sized to meet the requirements of the ASHRAE 15 Safety Code for Mechanical Refrigeration. Arrangement shall allow either valve to be isolated and replaced without removing the unit refrigerant charge.

The condenser shall be provided with positive shutoff valves in each compressor discharge line to the condenser. Additional tight closing valves shall be included in the liquid line leaving the condenser and the refrigerant liquid line to the oil coolers. This will allow pump down and storage of the refrigerant charge in the condenser. Due to the possibility of not seating properly, check valves are not acceptable for isolation purposes. If a check valve is used, a positive shutoff valve must be provided in series with the check valve.

Water boxes shall be removable to permit tube cleaning and replacement. Stub out water connections having ANSI/AWWA C 606 couplings grooves shall be provided. Water boxes shall be designed for 150 PSIG (1030 kPa) design working pressure and be tested at 225 PSIG (1550 kPa). Vent and drain connections with plugs shall be provided on each water box. Low flow protection shall be provided by a thermal type water flow sensor, factory mounted in the water nozzle connection and wired to the chiller control panel.

REFRIGERANT FLOW CONTROL

Refrigerant flow to the evaporator shall be controlled by a variable orifice control valve. The variable orifice control shall automatically adjust to maintain proper refrigerant level in the condenser and evaporator. This shall be controlled by monitoring refrigerant liquid level in the condenser, assuring optimal subcooler performance.

CONTROL CENTER

General – The chiller shall be controlled by a single microprocessor based control center. The chiller control panel shall provide control of chiller operation and monitoring of chiller sensors, actuators, relays and switches. The chiller panel shall provide capacity control operation of the two parallel compressors, and shall provide cycling of compressors in response to load requirements.

Control Panel – The control panel shall include a 10.4 in. diagonal color liquid crystal display (LCD) surrounded by "soft" keys which are redefined based on the screen displayed at that time. This shall be mounted in the middle of a keypad interface and installed in a locked enclosure. The screen shall detail all operations and parameters, using a graphical representation of the chiller and its major components. Panel verbiage shall be available in other languages as an option, with English always available. Data shall be displayed in either English or Metric units. Smart Freeze Point Protection shall run the chiller at 36°F (2.2°C) leaving chilled water temperature, and not have nuisance trips on low water temperature. The sophisticated program and sensor shall monitor the chiller water temperature to prevent freeze up. The panel shall display countdown timer messages so the operator knows when functions are starting and stopping. Every programmable point shall have a pop up screen with the allowable ranges, so that the chiller cannot be programmed to operate outside of its design limits.

The chiller control panel shall also provide:

A. System operating information including:

- Return and leaving chilled water temperature
- Return and leaving condenser water temperature
- Evaporator and condenser saturation temperature
- Differential oil pressure (both compressors)
- Percent motor current (both motors)

- · Compressor discharge temperature (both compressors)
- · Oil reservoir temperature
- Compressor thrust bearing positioning (both compressors)
- · Chiller operating hours, and operating hours
- · Number of unit starts, and number of starts each compressor
- B. Digital programming of setpoints through the universal keypad including:
 - · Leaving chilled water temperature
 - · Percent current limit
 - · Pull down demand limiting
 - · Six week schedule for starting and stopping the chiller, pumps and tower
 - · Remote reset temperature range
- C. Status messages indicating:
 - · System ready to start
 - · System running
 - · System coast down
 - · System safety shutdown manual restart
 - System cycling shutdown auto restart
 - · System prelube
 - · Start inhibit
- D. The text displayed within the system status and system details field shall be displayed as color coded message to indicate severity: red for safety fault, orange for cycling faults, yellow for warnings, and green for normal messages.
- E. Safety shutdowns enunciated through the display and the status bar, and consist of system status, system details, day, time, cause of shutdown, and type of restart required. Safety shutdowns shall include:
 - · Evaporator low pressure
 - Evaporator transducer or leaving liquid probe
 - Evaporator transducer or temperature sensor
 - Discharge high pressure contacts open (each compressor)
 - · Condenser high pressure
 - · Condenser pressure transducer out of range
 - · Auxiliary safety contacts closed
 - Discharge high temperature (each compressor)

- Discharge low temperature (each compressor)
- Oil high temperature
- Oil low differential pressure (each compressor)
- Oil high differential pressure (each compressor)
- · Oil sump pressure transducer out of range
- Oil differential pressure calibration (each compressor)
- Oil variable speed pump pressure setpoint not achieved (two)
- Thrust bearing proximity probe clearance (each compressor)
- Thrust bearing proximity probe out of range (each compressor)
- Thrust bearing proximity probe uncalibrated (each compressor)
- Watchdog software reboot
- · Surge detection excess surge
- F. Cycling shutdowns enunciated through the display and the status bar, and consists of system status, system details, day, time, cause of shutdown, and type of restart required. Cycling shutdowns shall include:
 - · Multi unit cycling contacts open
 - System cycling contacts open
 - · Oil low temperature differential
 - Oil low temperature
 - · Control panel power failure
 - · Leaving chilled liquid low temperature
 - Leaving chilled liquid flow switch open
 - Motor controller contacts open (each motor)
 - Motor controller loss of current (each motor)
 - · Power fault for each motor
 - · Control panel schedule
 - Proximity probe low supply voltage
 - Oil variable speed pump drive contacts open (each pump)
- G. Cycling shutdowns with a VSD shall include (each vsd):
 - VSD shutdown requesting fault data
 - VSD stop contacts open
 - · VSD initialization failed

- · VSD high phase A, B, C instantaneous current
- · VSD Phase A, B, C gate driver
- · VSD single phase input power
- VSD high DC bus voltage
- VSD pre charge DC bus voltage imbalance
- · VSD high internal ambient temperature
- · VSD invalid current scale selection
- VSD invalid current scale selection
- VSD low phase A, B, C inverter heat-sink temp.
- VSD low converter heat-sink temperature
- VSD pre-charge low DC bus voltage
- VSD logic board processor
- VSD run signal
- VSD serial communications
 (Filter Option only for each low voltage VSD)
- · Harmonic filter logic board or communications
- Harmonic filter high DC bus voltage
- · Harmonic filter high phase A, B, C current
- Harmonic filter phase locked loop
- Harmonic filter pre-charge low DC bus voltage
- · Harmonic filter DC bus voltage imbalance
- Harmonic filter 110% input current overload
- Harmonic filter logic board power supply
- · Harmonic filter run signal
- · Harmonic filter DC current transformer 1
- Harmonic filter DC current transformer 2
- H. Security access to prevent unauthorized change of setpoints, to allow local or remote control of the chiller, and to allow manual operation of the pre rotation vanes and oil pump. Access shall be through ID and password recognition, which is defined by three different levels of user competence: view, operator, and service.
- Trending data with the ability to customize points of once every second to once every hour. The panel shall trend up to 6 different parameters from a list of over 140, without the need of an external monitoring system.

- J. The operating program stored in non volatile memory (EPROM) to eliminate reprogramming the chiller due to AC power failure or battery discharge. Programmed setpoints shall be retained in lithium battery backed RTC memory for a minimum of 11 years with power removed from the system.
- K. A fused connection through a transformer mounted on the variable speed oil pump panel shall provide individual over current protected power for all controls.
- L. A numbered terminal strip for all required field interlock wiring.
- M. An RS 232 port to output all system operating data, shutdown/cycling message, and a record of the last alarm.
- N. 10 cycling or safety shutdowns to a field supplied printer. Data logs to a printer at a set programmable interval. This data can be preprogrammed to print from 1 minute to 1 day.
- O. The capability to interface with a building automation system to provide:
 - · Remote chiller start and stop
 - · Remote leaving chiller liquid temperature adjust
 - · Remote current limit setpoint adjust
 - · Remote ready to start contacts
 - · Safety shutdown contacts
 - · Cycling shutdown contacts
 - · Run contacts

LOW VOLTAGE VARIABLE SPEED DRIVE (OPTION)

A variable speed drive shall be factory-installed on the chiller. It shall vary the compressor motor speed by controlling the frequency and voltage of the electrical power to the motor. The capacity control logic shall automatically adjust motor speed and compressor pre-rotation vane position independently for maximum part load efficiency by analyzing information fed to it by sensors located throughout the chiller.

Drive shall be PWM type utilizing IGBTs with a power-factor of 0.95 or better at all loads and speeds. The variable speed drive shall be unit-mounted in a NEMA-1 enclosure with all power and control wiring between the drive and chiller factory-installed, including power to the chiller oil pump. Field power wiring shall be a single-point connection and electrical lugs for incoming power wiring shall be provided. The entire chiller package shall be certified to standard UL-1995 by a nationally recognized testing laboratory.

The variable speed drive is cooled by a closed loop, fresh water circuit consisting of a water-to-water heat exchanger and circulating pump. All interconnecting water piping is factory installed and rated for 150 psig (1550 kPa) working pressure.

The following features shall be provided: a door interlocked circuit breaker, capable of being padlocked; UL listed ground fault protection; overvoltage and under voltage protection; 3-phase sensing motor overcurrent protection; single phase protection; insensitive to phase rotation; over temperature protection; digital readout at the chiller unit control panel of:

- Output Frequency
- · Output Voltage
- · 3-phase output current
- · Input Kilowatts (kW) and Kilowatt-hours (kWh)
- · Self diagnostic service parameters
- Separate meters for this information shall not be acceptable.

(Optional) A harmonic filter that limits electrical power supply distortion for the variable speed drive to comply with the guidelines of EEE- 519 2014 shall be provided. The filter shall be unit mounted within the same NEMA 1 enclosure and shall be UL listed. The following digital readouts shall be provided at the chiller unit control panel as part of the filter package:

- Input KVA
- · Total power-factor
- · 3-phase input voltage
- · 3-phase input current
- 3-phase input voltage total harmonic distortion (THD)
- 3-phase input current total demand distortion (TDD)
- · Self diagnostic service parameters
- Separate meters for this information shall not be acceptable.

REMOTE ELECTRO-MECHANICAL COMPRESSOR MOTOR STARTER (OPTION)

A remote mounted electro-mechanical starter shall be furnished for each compressor motor. The starter shall be furnished in accordance with the chiller manufacturer's starter specifications R 1137, and as specified elsewhere in these specifications.

MEDIUM VOLTAGE VARIABLE SPEED STARTER (OPTION)

The Variable Speed Drive will be remote floor mounted. It will vary the compressor motor speed by controlling the frequency and voltage of the electrical power to the motor. The capacity control logic shall automatically adjust motor speed and compressor pre-rotation vane position independently for maximum part-load efficiency by analyzing information fed to it by sensors located throughout the chiller.

Definitions

For the purpose of this Specification, the following definitions apply:

- VSD Variable speed drive is a device that is used to vary the speed of a previously fixed speed motor.
- **NPC** Neutral Point Clamp is an VSD topology that has the advantage of reducing the high line to neutral voltage that can occur in other traditional drive designs that can reach 2.7 to 3.3 times normal levels.
- PWM Pulse Width Modulation is a method of controlling power devices to convert voltage levels. PWM is a popular method of control for converting DC voltage to AC voltage.
- IGBT- Insulated Gate Bipolar Transistor is a high speed electrical switching power device. It is very efficient requiring very low power for control circuits
- HCT Hall Effect Current Transformer are used for detection of currents over a frequency range of DC to high frequency without direct contact or shunts.
- CPT- Control Power Transformer is typically used to power control circuits and relays for the VSD.
- FLA Full Load Amps.

Components

The VSD shall consist of the following components:

- · Incoming Disconnect
- A 24 pulse input Isolation Transformer with Rectifier that limits electrical power supply distortion.
- Frequency Converter/Inverter
- VSD Protective System/Devices
- Output filter or reactor (when required to limit reflected voltage)
- Output Disconnect(s) or bypass (when specified on Data Sheet)
- · Diagnostics and Control Circuits
- Two control power transformers, for the Control Center and for chiller oil pump operation.

Features

The following features will be provided:

- PWM type utilizing IGBT's with a power factor of 0.95 or better at all loads and speeds.
- · Door interlocked circuit breaker capable of being padlocked.
- · UL listed ground fault protection.
- Over voltage and under voltage protection.

- · 3-phase sensing motor over current protection.
- · Single phase protection.
- · Insensitive to phase rotation.
- · Over temperature protection.
- Digital readout at the chiller unit control panel of output frequency, output voltage, 3-phase output current, input Kilowatts and Kilowatt-hours, self-diagnostic service parameters, Elapsed Time Meter.
- Separate meters for this information will not be acceptable.

General Design and Fabrication

The VSD inverter/chopper shall be of the pulse width modulated (PWM) Neutral Point Clamp (NPC) type. The output devices shall be Insulated Gate Bipolar Transistors (IGBT's) with a minimum voltage rating of 3300V. Use of lower rated devices is unacceptable due to the quantity of devices required in the design.

- All components and material shall be new and of the latest field proven design and in current production. Obsolete components or components scheduled for immediate discontinuation shall not be used.
- The equipment shall be completely factory built, assembled, wired, and tested. When
 it is necessary to disassemble the units for ease of transportation, adequate materials and instructions shall be provided for easy field reassembling.
- For VSD applications where the line voltage is higher than 6600V and the drive uses an input voltage of 6600 V or less then any transformer used to reduce the line voltage from greater than 6600V to less than 6600V must have the transformer inefficiencies included in the chiller energy analysis.
- The VSD shall be capable of continuous operation up to altitudes of 5000 ft.

Enclosures and Cooling

The VSD enclosure shall be suitable for installation in an indoor, unclassified area.

All enclosure openings exceeding 0.25 inch (6 mm) in width shall be provided with screens to prevent the entrance of snakes, rodents, etc. The maximum screen mesh opening width shall be 0.25 inch (6 mm).

A "loss of cooling" fault shutdown shall be furnished with this forced cooled equipment. In the event of clogged filters or fan failure, the drive will shut down safely without electronic component failure.

Air filters shall be of a reusable type that can be easily cleaned. All doors or front panels will be fully gasketed. Air exhaust from cooling fans will be at the top of the enclosure away from personnel in front of the equipment.

Fan motors shall be protected by an input circuit breaker. Metal squirrel cage ball bearing 460V three phase fan motors are to be used in the drive design. Plastic muffin fans are not acceptable. As specified on the data sheet, fan power will be obtained from a remote 460V three-phase power or from the primary 2300 /3300/ 4160V power through a tap on the input transformer.

The maximum noise level of the unit shall not exceed 80 dBA at a distance of 1 meter from the unit and at a height of 1.5 meters from the floor.

Painting

Use Manufacturer's standard finish.

Operational Controls

All operator controls and adjustments are through the Chiller control center.

The VSD shall include necessary components to protect the VSD and motor against motor overload, internal faults in either the motor or VSD and disturbances in the incoming AC line.

The following conditions shall cause the VSD to be shut down with the output voltage reduced to zero. The failure shall be annunciated on the Chiller control center.

- · Cooling fan loss
- Input transformer over temperature
- · Heatsink over temperature
- · Motor current overload
- · Output current imbalance
- · High output frequency
- · Input phase loss
- DC Link Voltage imbalance
- DC Link Voltage overvoltage
- DC Link Voltage undervoltage
- · Ground fault
- · Power supply fault
- · IGBT gate drive fault
- · Communications fault
- · Cabinet doors interlock

Input Power Transformer and Rectifier

The VSD shall contain an incoming isolation transformer whose primary voltage shall be as specified on the Data Sheet.

The transformer shall contain 12 three phase secondary windings that provide the proper phase shifting to develop a 24-pulse rectification to reduce harmonic currents and voltages reflected to the primary power system.

The transformer shall be copper wound and shall have a 220°C insulation system to operate at 115° C rise at full load conditions.

The transformer and rectifier shall be an integral part of the VSD assembly along with primary disconnect switch, input vacuum contactor and secondary fusing eliminating the need for separate components field installation or wiring.

Soft charge of the DC bus capacitors is accomplished by use of an input reactor on the primary of the input transformer. A vacuum contactor rated for drive full load amps will short the reactor after charge is accomplished.

Control Power Transformers

An 115V single phase nominal 2.0KVA transformer will be supplied for chiller controls.

A 400/460V three phase 50/60Hz up to 3KVA transformer will be supplied for chiller oil pump operation.

Operator Panel Displays:

All operator displays are through the Chiller control center.

The following items will be monitored and displayed:

- Output frequency
- · Output voltage
- · Motor current
- · Input voltage
- · Input power
- Energy consumption KWH

Power Requirements

The VSD shall be capable of providing rated output for continuous voltage deviations of +10%.

The VSD input short circuit withstand rating shall be 50,000A.

The VSD shall be able to ride through voltage dips down to 10% of minimum, such as those experienced during motor starting.

The VSD 40 second overload current rating shall be set at 105% of rated compressor current.

The VSD shall comply with the requirements of IEEE- 519 2014.

Voltage distortion shall not exceed 3% and current distortion shall not exceed 5% at the input lugs of the VSD over an operating power range of 30% to 100% of rated power with phase voltage imbalance per the 3% specification.

The VSD converter section shall be configured as a 24 pulse or greater to eliminate the need for harmonic filters.

Power Bus

All power bus bars, when part of the standard design and other current carrying parts shall be tin-plated copper for corrosion resistance. Power bus bar joints shall be tin plated.

Bus bars shall be braced to withstand short circuit currents shown on the Data Sheet with a minimum of 50KAIC.

Input and output connections shall be either top or bottom access in the standard design.

Inverter Section Design

The VSD inverter section shall consist of three cells where each cell has two series DC power supplies per phase. Each DC supply is derived from a phase shifted secondary of the input transformer that cancels reflected harmonics back to the power line. The DC power supply is filtered by long lasting oil filled capacitors. Electrolytic capacitors are not permitted.

Each cell has eight 3300V Insulated Gate Bipolar Transistors (IGBT's) in a single phase bridge connection such that when in combination with the other bridges, a 5 level output voltage is constructed to the motor. A bridge neutral point is jumpered to each of the three cells. This configuration called Neutral Point Clamp (NPC) provides a normal phase to ground level voltages that are superior to other direct PWM or multi-level twelve cell VSD designs that can cause 1.8 to 3.3 times normal line to ground voltage.

Each power device communicates to the microprocessor with fiber optic communications. No other isolation method is allowed.

A high resistance ground detection circuit at the neutral point is used for system shutdowns in the event the load has a ground fault.

Two Hall Effect Current Transformers (HCT) are used for current feedback on the VSD output.

PWM firing pulses will result in an output voltage and current waveform that will result in less than 2% torque ripple over a 20 to 1 speed range on the motor.

Disconnects

The VSD shall include a main disconnect device with an interlocked and padlockable handle mechanism. The disconnecting device shall be a medium voltage vacuum contactor with a bolted pressure disconnect switch whose blades are externally visible from outside the enclosure. The disconnect device shall have a momentary withstand rating greater than the available fault current indicated on the Data Sheet.

When multiple doors are supplied, all doors shall be electrically interlocked with the disconnect device. The interlocks shall include provisions to manually override for test and repair.

Wiring and Terminations

Bus bar with standard four-hole pattern to be supplied for input and output shall be provided for connection of external wiring and shall be conveniently located, clearly numbered, and identified.

Control wire terminal blocks for external wiring terminations shall be compression screw type, designed to accommodate stripped insulation bare wire ends, and shall accept a minimum of two No. 14 AWG wires.

Connection points for inputs and outputs of different voltage levels shall be segregated to reduce possibility of electrical noise. If necessary, this may be accomplished through the use of terminal barriers and covers.

Where wiring is run through sheet metal or any barrier, bushings, grommets or other mechanical protection around the sheet or barrier opening shall be provided.

All internal wiring shall be terminated with no more than two (2) conductors per terminal block point.

The VSD shall have an internal mechanical ground connection suitable for terminating a stranded copper ground conductor of the same size as the incoming phase conductors. Ground connections shall be near the incoming and outgoing power cable termination points and control wiring connections.

Minimum wire bending space shall meet or exceed the value shown in NEC Table 430 10 (b) for termination of the power cable and shall be documented on Manufacturer's drawings.

Inspection and Testing

Manufacturer's standard tests shall be performed. Minimum testing shall include:

Power semiconductors shall be thermally cycled and printed circuit boards shall be burned in prior to final assembly into the VSD.

Individual power cells shall undergo a visual inspection, an electrical inspection, and a complete full load test prior to final assembly into the VSD. A test record for each power cell shall be furnished as part of the final data requirements if requested on the data sheets.

Mechanical operation tests shall be performed for each VSD to verify satisfactory operation. These tests shall include checking operating mechanisms and interlock devices.

Electrical function tests shall be performed to ensure proper operation of all devices and components including operation of the VSD at full load conditions. Instrumentation, software, and monitoring tests shall be included.

The final assembly will be tested at full load and voltage by a power back method that returns drive output power to the power line. An unloaded full voltage motor will also be used during testing.

Shipping

Preparation for shipment shall be in accordance with Manufacturer's standards.

Loose equipment shall be appropriately packaged and secured for shipment inside the enclosure or shipping container. These items shall be properly tagged for easy identification.

Documentation

Manufacturer Drawings and Data

Equipment shall be shipped with one set of installation, operation, and maintenance manuals.

PORTABLE REFRIGERANT STORAGE / RECYCLING SYSTEM (OPTION)

A portable, self contained refrigerant storage/recycling system shall be provided consisting of a refrigerant compressor with oil separator, storage receiver, water cooled condenser, filter drier and necessary valves and hoses to remove, replace and distill refrigerant. All necessary controls and safety devices shall be a permanent part of the system.

SI Metric Conversion

Values provided in this manual are in the English inch-pound (I-P) system.

The following factors can be used to convert from English to the most common SI Metric values.

MEASUREMENT	MULTIPLY THIS ENGLISH VALUE	ВҮ	TO OBTAIN THIS METRIC VALUE	
CAPACITY	TONS REFRIGERANT EFFECT (ton)	3.516	KILOWATTS (kW)	
POWER	KILOWATTS (kW)	NO CHANGE	KILOWATTS (kW)	
FOWER	HORSEPOWER (hp)	0.7457	KILOWATTS (kW)	
FLOW RATE	GALLONS / MINUTE (gpm)	0.0631	LITERS / SECOND (L/s)	
LENGTH	FEET (ft)	304.8	MILLIMETERS (mm)	
LENGIA	INCHES (in)	25.4	MILLIMETERS (mm)	
WEIGHT	POUNDS (lb)	0.4536	KILOGRAMS (kg)	
VELOCITY FEET / SECOND (fps)		0.3048	METERS / SECOND (m/s)	
PRESSURE DROP	FEET OF WATER (ft)	2.989	KILOPASCALS (kPa)	
PRESSURE DRUP	POUNDS / SQ. INCH (psi)	6.895	KILOPASCALS (k Pa)	

TEMPERATURE

To convert degrees Fahrenheit (°F) to degrees Celsius (°C), subtract 32° and multiply by 5/9 or 0.5556.

To convert a temperature range (i.e., 10°F or 12°F chilled water range) from Fahrenheit to Celsius, multiply by 5/9 or 0.5556.

FOULING FACTOR

ENGLISH I-P	EQUIVALENT SI METRIC
(fT² °F hr/Btu)	(m² k/kW)
0.0001	0.018
0.00025	0.044
0.0005	0.088
0.00075	0.132

EFFICIENCY

In the English I-P system, chiller efficiency is measured in kW / ton:

$$kW/ton = \frac{kW input}{tons refrigeration effect}$$

In the SI Metric system, chiller efficiency is measured in Coefficient of Performance (COP).

$$kW/ton = \frac{kW input}{kW refrigeration effect}$$

kW / ton and COP are related as follows:

$$kW/ton = \frac{3.516}{COP}$$

$$COP = \frac{3.516}{kW/ton}$$

Notes

