Johnson Controls® BlueStream™
Hybrid Cooling Systems

In Petrochemical Manufacturing and Pharmaceutical Processing Plants.

Optimizing Resource Management
The BlueStream hybrid cooling system lets you manage both natural and financial resources with tremendous efficiency. It is equally cost-effective when building a new facility or retrofitting a plant experiencing restricted water resource issues.

Optimized Efficiency:
The BlueStream Hybrid Cooling System
At Johnson Controls, we are passionate about water conservation issues. Finding new ways to be more efficient in the use of this precious natural resource is a priority for us and the customers we serve. Our patent-pending BlueStream hybrid cooling system reduces water use by as much as 80% while minimizing operational costs.

The BlueStream hybrid cooling system adds a dry cooling system to your existing wet system, then coordinates the operation of the two for optimum efficiency, utilizing wet cooling when it’s hot and dry cooling when it’s not. Intelligent controls allow a combination of the two to run simultaneously in all weather conditions between the two extremes.

Its modular design allows this system to be scaled up to handle the largest of facilities in the most extreme environments.

The system utilizes the Thermosyphon cooler, a dry-heat rejection unit that can be used in an open cooling tower loop or as a dry waterside economizer. Refrigerant circulates naturally through the Thermosyphon process, with no need for a pump or compressor. Freeze protection is accomplished by controlling the refrigerant flow. This system is designed for low maintenance, with an easily cleanable low pressure drop heat exchanger.

Additional advantages include:
- Highly efficient contact with open cooling water
- Low waterside pressure drop (1–4 psi)
- A “W Coil” 12-fan design that allows minimal spacing between adjacent units, reducing plan area requirements
- Smaller installation space and lower relative cost compared with those of competitive units

Compatibility with an existing condenser water system is easily achieved, as evaporator tube metals can be cost-effectively substituted at the design phase before manufacturing. Alternative metals include CUNI, stainless steel or titanium.
Measuring Cost-Effectiveness: The WECER Ratio

To fully appreciate the potential operational savings of the BlueStream hybrid cooling system, you have to balance water and energy usage costs. This is expressed as the Water-to-Energy Cost Equivalence Ratio or WECER. Simply put, WECER is cost of water ($/1,000 gallons) divided by cost of electricity ($/kWh).

A detailed annual economic analysis was recently conducted for a chemical plant located in the Houston, Texas area to determine the impact of water constraints on overall plant profitability. The blue diagonal line on Figure 1 at the right shows the severe profitability impact that even minor constraints on water availability for a cooling tower heat-rejection system can have on the overall plant profitability. For a cooling tower-only system, typically the only available option to meet a constraint in cooling tower water use is to proportionally reduce plant output. Simply installing various numbers of Thermosyphon coolers as part of the BlueStream hybrid cooling system, as shown by the green, red and purple lines, can cost-effectively provide additional operational resiliency and ensure plant profitability in the face of varying levels of water constraints.

Figure 2 shows the calculated internal rate of return for the various quantities of Thermosyphon Coolers installed to meet different degrees of projected percent water constraints. Since the Thermosyphon coolers can be installed incrementally to an existing cooling system their quantity can easily be increased at a later date if conditions dictate additional water savings are required.

Flexibility and Functionality

A BlueStream hybrid cooling system can be incorporated incrementally into an existing facility without greatly modifying the existing infrastructure and with minimal disruption to plant operations.

A Global Leader in Controls Technology

Johnson Controls provides expert assistance at every stage of your project, from overview, design and manufacturing to installation, training and maintenance support functions. Visit www.johnsoncontrols.com/bluestream for more information.
Rugged structural steel framing

Uses natural Thermosyphon effect to circulate the refrigerant; no intermediate pump required

No need for antifreeze; freeze protection is accomplished by controlling refrigerant flow

Highly efficient, low-maintenance insulated shell and tube evaporator:
- Cleanable tubes that enable efficient contact with open-loop cooling water
- Low waterside pressure drop (1-4 psi) minimizes pumping energy
- Auxiliary heaters equipped to add another level of freeze protection
- Alternative tube materials available

High-efficiency premium variable-speed fans

Freeze-protected single-pass condenser

High-efficiency premium variable-speed fans

Industry-leading Quantum™ HD control panel designed for dynamically balanced energy and water use to optimize total operating cost

Industrial-grade NEMA 3R VFD panel

Rugged structural steel framing
Our BlueStream hybrid cooling system combines air-cooled and water-cooled heat rejection systems with advanced controls, reducing water usage by up to 80% while optimizing efficient energy use. Excellent for either new or retrofit applications.

Better Resource Management Through Hybrid Technology

Warranty and Support
Johnson Controls supports customers at thousands of worldwide locations with full parts and service capabilities to provide exceptional responsiveness.

Contact Us for a Quote
For a quote or further information about the BlueStream hybrid cooling system, please email BE-Bluestream@jci.com.

Power Generation Plants
Central Chiller Plants
Data Centers